poisson gamma dynamical systems - columbia universityas5530/scheinzhouwallach2016_slides.pdf · our...

Post on 18-Jan-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Poisson Gamma Dynamical Systems

Aaron Schein UMass Amherst

Mingyuan Zhou Univ. Texas at Austin

Hanna Wallach Microsoft Research

Joint work with:

Sequential multivariate count data

Days in 2003

Sequential multivariate count data

Days in 2003

bursty

Sequential multivariate count data

Days in 2003

bursty

Sequentially observed count vectors

It is everywhere.

Sequential multivariate count data

International relations

RUS

PRK

JAP

KOR

International relations

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

June 28, 2003

RUS

PRK

JAP

KOR

Sequentially observed count vectors

6/28

32

2

0

0

0

5

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

June 28, 2003

RUS

PRK

JAP

KOR

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

June 29, 2003

RUS

PRK

JAP

KOR

40

0

0

0

0

0

6/29

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

June 30, 2003

RUS

PRK

JAP

KOR

40

0

0

0

0

0

6/29

7

0

2

5

6

10

6/30

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

July 1, 2003

RUS

PRK

JAP

KOR

40

0

0

0

0

0

6/29

7

0

2

5

6

10

6/30

3

0

0

0

0

13

7/1

Sequentially observed count vectorsJuly 2, 2003

RUS

PRK

JAP

KOR

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

40

0

0

0

0

0

6/29

7

0

2

5

6

10

6/30

3

0

0

0

0

13

7/1

3

0

21

0

0

0

7/2

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

40

0

0

0

0

0

6/29

7

0

2

5

6

10

6/30

3

0

0

0

0

13

7/1

3

0

21

0

0

0

7/2

T

V

Sequentially observed count vectors

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

0

5

40

0

0

0

0

0

6/29

7

0

2

5

6

10

6/30

3

0

0

0

0

13

7/1

3

0

21

0

0

0

7/2

sparseV = 6,197

only 4% non-zero!

T

VT = 365

Sequentially observed count vectors

y(1), . . . ,y(T )

y(t) =0

2

0

0

1

7V

Sequentially observed count vectors

y(1), . . . ,y(T )

y(t) =0

2

0

0

1

7V

bursty

RUS-KOR

RUS-PRK

KOR-PRK

JAP-RUS

JAP-PRK

JAP-KOR

6/28

32

2

0

0

05

40

0

0

0

0

0

6/29

7

02

5

6

10

6/30

3

0

0

0

013

7/1

3

021

0

0

0

7/2

sparse

Especially for large V!

Modeling sequential count data

• Prediction (forecasting, smoothing) • Explanation • Exploration (interpretability!)

Many reasons to want a probabilistic model

Modeling sequential count data

• Autoregressive models

• Hidden Markov models

• Dynamic topic models

• Hawkes process models

Many probabilistic models for sequential counts

Modeling sequential count data

• Expressive

• Parsimonious

• Gaussian*

Linear dynamical systems

unnatural for count datamisspecified likelihood… …or non-conjugate

Modeling sequential count data

The case for naturalness

Natural models

• Statistically and computationally efficient • the right inductive bias constrains the hypothesis space • the right inductive bias supplements a lack of data • quantities of interest available in closed form

• Important for measurement

✓ likelihood matches the support of the data ✓ conjugate priors

Our contributions:• Novel generative model

• Matches the form of linear dynamical systems • Natural for count data

• Auxiliary variable-based MCMC inference

• Superior forecasting and smoothing performance

(not size of data matrix, like the Gaussian LDS)

Benefits of the model:• Inference scales with the number of non-zeros

• Highly interpretable latent structure

Poisson gamma dynamical systems

y(t)v ⇠ Pois

!

· · ·

(natural likelihood for counts)

Poisson gamma dynamical systems

y(t)v

how active event type v is in component k

KX

k=1

�kv✓(t)k⇠ Pois

!

Poisson gamma dynamical systems

y(t)v

how active component k is at time step t

KX

k=1

�kv✓(t)k⇠ Pois

!

Poisson gamma dynamical systems

y(t)v

KX

k=1

�kv✓(t)k

h i=

Poisson gamma dynamical systems

⌧0Gam

,

!

⇠✓(t)k

KX

k0=1

⇡kk0✓(t�1)k0⌧0 · · ·

(conjugate prior to Poisson)

Poisson gamma dynamical systems

⌧0Gam

,

!

⇠✓(t)k

how active component k’ is at time step t-1

KX

k0=1

⇡kk0✓(t�1)k0⌧0

Poisson gamma dynamical systems

⌧0Gam

,

!

⇠✓(t)k

KX

k0=1

⇡kk0✓(t�1)k0⌧0

the probability of transitioning from component k’ into k

KX

k=1

⇡kk0 = 1

Poisson gamma dynamical systems

⌧0Gam

,

!

⇠✓(t)k

KX

k0=1

⇡kk0✓(t�1)k0⌧0

concentration hyperparameter

Poisson gamma dynamical systems

⌧0✓(t)k

KX

k0=1

⇡kk0✓(t�1)k0⌧0h i

=

Poisson gamma dynamical systems

✓(t)k

KX

k0=1

⇡kk0✓(t�1)k0

h i=

Poisson gamma dynamical systems

h i= ⇧✓(t�1)✓(t)

h i=y(t) �✓(t)

(matches linear dynamical systems)

Poisson gamma dynamical systems

Inferred latent structure

International relations data from 2003

Inferred latent structure

�kv

The top event types for component k=1

Inferred latent structure

✓(1)k , . . . , ✓(T )k

�kv

Inferred latent structure

Inferred latent structure

Inferred latent structure

Inferred latent structure

Inferred latent structure

Inferred latent structure

Inferred latent structure

Inferred latent structure

Technical challenge LegendPoisson/MultinomialGamma/Dirichlet

✓(1)

y(1) y(2) y(3)

✓(2) ✓(3)

Technical challenge LegendPoisson/MultinomialGamma/Dirichlet

✓(1)

y(1) y(2) y(3)

✓(2) ✓(3)

� ⇠(conditional posterior has closed form)

P (⇧ |Y,⇥,⌫)⇧ ⇠

P (⇥ |Y,⇧,⌫)⇥ ⇠

P (� |Y )

Augment and Conquer LegendPoisson/MultinomialGamma/Dirichlet

✓(1)

y(1) y(2) y(3)

✓(2)✓(3)

Original model⇧

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

l(1)

Alternative model

⇧ ⇠ P (⇧ | A, Y,⌫)

Three rules

m

�↵

l

m

�↵

l

m

�↵

m

�↵

y

✓ l

y

✓ l

m

LegendPoisson/MultinomialGamma/Dirichlet

Three rules

y

✓ l

y

✓ l

m

LegendPoisson/MultinomialGamma/Dirichlet

Relationship between Poisson and Multinomial

Steel (1953)

Three rules

m

�↵

l

m

�↵

l

m

�↵

m

�↵

y

✓ l

y

✓ l

m Poisson-multinomial relationship

LegendPoisson/MultinomialGamma/Dirichlet

Three rules

m

�↵

m

�↵

LegendPoisson/MultinomialGamma/DirichletNegative binomial

Negative binomial as gamma-PoissonGreenwood & Yule (1920)

Three rules

m

�↵

l

m

�↵

l

m

�↵

m

�↵

y

✓ l

y

✓ l

m Poisson-multinomial relationship

LegendPoisson/MultinomialGamma/Dirichlet

Negative binomial definition

Negative binomial

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distributionZhou & Carin (2012)

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distributionZhou & Carin (2012)

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distributionZhou & Carin (2012)

P (m |↵,�)=

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distribution

CRT

Zhou & Carin (2012)

P (m |↵,�)=

P (l |m,↵)

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distribution

CRT

Zhou & Carin (2012)

P (m |↵,�)=

P (l |m,↵) P (l |↵,�)=

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

Magic bivariate count distribution

CRTSumLog

Zhou & Carin (2012)

P (m |↵,�)=

P (l |m,↵) P (l |↵,�)=

P (m | l,�)

Three rules

m

�↵

l

m

�↵

l

LegendPoisson/MultinomialGamma/DirichletNegative binomial

P (l,m |↵,�)

P (m | l,�)P (l |↵,�)=

P (l |m,↵)P (m |↵,�)=

Magic bivariate count distribution

CRTSumLog

Zhou & Carin (2012)

Three rules

m

�↵

l

m

�↵

l

m

�↵

m

�↵

y

✓ l

y

✓ l

m Poisson-multinomial relationship

LegendPoisson/MultinomialGamma/Dirichlet

Negative binomial definition

Negative binomialCRTSumLog

Magic bivariate count distribution

Augment and Conquer

✓(1)

y(1) y(2) y(3)

✓(2) ✓(3)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

Augment and Conquer

✓(1)

y(1) y(2) y(3)

✓(2) ✓(3)

l(4)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

✓(3)

Augment and Conquer

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

Augment and Conquer

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

Augment and Conquer

l(3)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

Augment and Conquer

l(3)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

Augment and Conquer

l(3)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

l(2)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

l(2)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

l(2)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog⇧

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

l(2)

m(1)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

y(1) y(2) y(3)

l(4)

m(3)

Augment and Conquer

l(3)

m(2)

l(2)

m(1)

l(1)

LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog⇧

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

l(1)

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog⇧

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

l(1)

⇧ ⇠ P (⇧ | A, Y,⌫)

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog⇧

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

l(1)

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog⇧

✓(1)

y(1) y(2) y(3)

l(4)

m(3)

l(3)

m(2)

l(2)

m(1)

✓(1) ⇠ P (✓(1) | A, Y,⇧,⌫)

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(2) ⇠ P (✓(2) |✓(1),A, Y,⇧,⌫)

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

l(3)

m(2)

Augment and Conquer LegendPoisson/MultinomialGamma/DirichletNegative binomialCRTSumLog

✓(3) ⇠ P (✓(3) |✓(2),✓(1),A, Y,⇧,⌫)

✓(1)

y(1) y(2) y(3)

✓(2)

l(4)

m(3)

✓(3)

Solution

Forward sampling ✓(t) ⇠ P (✓(t) |✓(t�1),A, Y,⇧,⌫)

Backward filtering A(t) ⇠ P (A(t) | A(t+1), Y,⇥,⇧,⌫)

Backward filtering forward sampling (BFFS)

Conclusion

Elegant inference in the natural model

and relies on a novel auxiliary variable scheme

that scales with the number of non-zeros

Come to poster #193 tonight!

https://github.com/aschein/pgds

top related