physical processes classical models secular and thermal

Post on 28-Nov-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

2005 Black-Hole Accretion Disks: Revised
Introduction (Introduction and Observations)
Physical Processes
Classical Models
Dwarf-Nova Type Instability× Observability of Relativistic Effects
Basic Equations
Transonic Flow
11 Basics of Disk Oscillations
12 Quasi-Periodic Oscillations
2010/10/12 Black-Hole Accretion Disks 3
Black-Hole Accretion Disks: Revised
1. Introduction (Introduction and Observations)
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
1 Introduction
luminous X-ray Sources

3C273

3C273

3C273
1966

m=12.8
L1045-46 erg/s
τ106 yr
E1060 erg

Rct

E=GM2/R

Salpeter 1964
2010/10/12 Black-Hole Accretion Disks 15








Intermission
1920- 1956- 2010/10/12 Black-Hole Accretion Disks 22


1977





BH
AGNjetprime mover
• YSO: young stellar object
• AGN: active galactic nuclei






1
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
1 Introduction 1. Accretion Energy-Historical
Origin
3. X-ray Binaries and Ultra- luminous X-ray Sources
4. Active Galactic Nuclei


SED
Spectral Energy
Distribution (SED)
IR Class
– Class 0
1551
bipolar jets of 15km/s
disk L1551 110GHz

– 100 AU

R CrA
X
WD+red star

92

Dwarf novae
U
DN U Gem

V1223
X
X CAL87
CAL 87

Z Cam

EX Hya

X
Low Mass X-ray Binaries LMXB High Mass X-ray Binaries HMXB
2010/10/12 Black-Hole Accretion Disks 23
XX
X-ray burster
XX X1636
XX
X-ray pulser
XX X-1
XX
XX XGS2000
X
X 1822-371
X
Sco X-1
X
X
X
Microquasars (MQs/μQs)
2010/10/12 Black-Hole Accretion Disks 34
BHB

BHB

chaotic/fractal
BHB

7
BHB

BHB

BHB

BHB&MQ
X-1
O9Iab HD226868+bh
X-1

75km/s
X-1
X
X-1
X
X-1

SS433
(Margon et al. 1984)
SS433


SS433


9
SS433


162
SS433

SS433

SS433
X
SS433

SS433

SS433
GRS1915+105
GRS1915+105
X
– Bright, compact, off-nuclear X-ray sources
– Revealed by ASCA, ROSAT, Chandra, XMM
2010/10/12 Black-Hole Accretion Disks 57
X M82 X-1
X M82 X-1
X
– Beaming
of 20-50Msun
M82 X-1
– 1041 erg/s
2010/10/12 Black-Hole Accretion Disks 60
X

2010/10/12 Black-Hole Accretion Disks 62







(LINER)



Powful RGs vs Weak RGs
– 1032 erg/s/Hz at 1GHz
Baade & Minkowski (1951) M87/Vir A
2010/10/12 Black-Hole Accretion Disks 70
M87A
NGC5128A


BLRG vs NLRG


BAL (broad absorption line QSO)
HPQ (highly polarized QSO)
OVV (optically violent variables)
3C273
3C273
3C273
X

2010/10/12 Black-Hole Accretion Disks 80



6.7keV
6.4keV
Sy

BH M31
BH M87
BH M106
BH M106
BH A*
Sgr A*
BH A*
Sgr A*
BH


UV Bump

UV Bump
Arp102B
MCG-6-30-15
Present New Paradigm
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
2 Physical Processes Related to Accretion 1. Eddington Luminosity
2. Bondi Accretion
3. Viscous Process
4. Magnetic Instabilities
5. Relativistic Effects

• M
• mH
• r

• σT
LE

2010/10/12 Black-Hole Accretion Disks 5 2010/10/12 Black-Hole Accretion Disks 6



RHL
HL
2
2010/10/12 Black-Hole Accretion Disks 9 2010/10/12 Black-Hole Accretion Disks 10



• cs
2=dp/dρ

– a



– 2
2010/10/12 Black-Hole Accretion Disks 16

• saddle


– Parker 1964

– Bondi 1957
4

x1y
• νkinetic viscosity

Φr



• lmfpρ10-8g/cm3







• vr











2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
2. Standard Disks

• vr<< vφ





νΩ
2

r2/3ν
r2/3ν
ν=

ν∝r
2010/10/12 Black-Hole Accretion Disks 9 2010/10/12 Black-Hole Accretion Disks 10







• ρ
r
• ψ
φ
• N
φ
z • Trφ∫trφdz
• ηρν
• l=r2Ω=lin
• l√GMr
z





qvis=qrad

vs

>104K)
• κes
• κff
α
α

Qvis=Qrad



(a)
(b)
(c)

• m=108
• dot m=0.1

• m=108
• dot m=0.1

• m=108
• dot m=0.1

• m=108
• dot m=0.1






2010/10/12 Black-Hole Accretion Disks 42


• p=3/4

• x=hν/kBT

X
Sco X-1
BHB

Malkan (1983)

3C273 SED



∝r-bb

EX Hya

Z ChaHα
BHB



3C273 SED





• Ti • Te • νE • lnΛCoulomb logarithm 15
• Qvis= Λie
• ΛieQrad


2010/10/12 Black-Hole Accretion Disks 63 2010/10/12 Black-Hole Accretion Disks 64


(a)
(b)
(c)

given
(1/ρ)∇p+∇φl2/r3=0 • φ
• l





2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
4 Secular and Thermal Instabilities 1. Secular Instability
2. Thermal Instability
4. Mathematical Derivation of Stability Criterion
2010/10/12 Black-Hole Accretion Disks 2

Σ→ →Σ → → →
2010/10/12 Black-Hole Accretion Disks 3 2010/10/12 Black-Hole Accretion Disks 4






ν∝r




““
Physics !
Σ p∝T4 Trφ=2αpHH p=Ω2ΣH/2H1/Σ Trφ1/Σ ΣH Trφ
““
A and B and C Rings
2010/10/12 Black-Hole Accretion Disks 10

• β






2010/10/12 Black-Hole Accretion Disks 16





• β





2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
6 Observability of Relativistic Effects 1. Ray Tracing
2. Imaging – Black Hole Silhouette
3. Photometry – Light Curve Diagnosis
4. Spectroscopy – Continuum and Line
5. Other Effects – Lensing and Jets
2010/10/12 Black-Hole Accretion Disks 2

2010/10/12 Black-Hole Accretion Disks 3 2010/10/12 Black-Hole Accretion Disks 4






“”
3 Iemν Iem ν/1+z3
I∫Iνdν • Iobs νobs/νem
4 Iem Iem /1+z4
F • FobsFem/1+z4
T • TobsTem/1+z
Iνν3


b2=27/4

Standard disks around a Schwarzschild hole – Luminet 1979; Fukue and
Yokoyama 1988
Standard disks around a Kerr hole – Fanton et al. 1997; Takahashi
2004
Spherically-distributed optically thin gas – Falcke et al. 2000
Supercritical disks around a Schwarzschild hole – Fukue 2003; Watarai et al.
2005



– Takahashi 2004?


– Fanton et al. 1997;

– Fanton et al. 1997;

– Fanton et al. 1997;





• →rg9×1011 cm





2010/10/12 Black-Hole Accretion Disks 32


– Asaoka 1989


7

– Chen et al. 1989
– Chen and Halpern 1989
– Fabian et al. 1989
– Matt et al. 1989

– Yamada et al. 1994




8

– Jaroszynski et al. 1992
– Takahashi et al. 2001









– 1E1740 ee? 0.26c
– GROJ1655 ee? bloby 0.92c

LLE
highly relativistic β=0.92γ=2.55
ultra relativistic β=0.99γ=10
2010/10/12 Black-Hole Accretion Disks 53



flat disk Fco



β0.45



0=rad.flux-rad.drag

– Bisnovatyi-Kogan and Blinnikov 1977
– Watarai and Fukue 1999 for supercritical disk
– Hirai and Fukue 2001 for Kerr case
– Fukue et al. 2001 for radiative collimation
– Orihara and Fukue 2003 for radiative collimation
2010/10/12 Black-Hole Accretion Disks 60



Kerr case

– Marcowith et al. 1995
– Sikora et al. 1996


ε dm=100, rcr=200, H/r=0.45 dm=1000, rcr=2000, H/r=0.98
2010/10/12 Black-Hole Accretion Disks 66
dm

dm
dm




“”


top related