photolithography 光刻 part i: optics

Post on 16-Oct-2021

24 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Xing Sheng, EE@Tsinghua

1

Xing Sheng盛兴

Department of Electronic EngineeringTsinghua University

xingsheng@tsinghua.edu.cn

Photolithography 光刻Part I: Optics

Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Xing Sheng, EE@Tsinghua

Integrate Circuits

5

Moore's law

transistor number transistor size

Xing Sheng, EE@Tsinghua

Transistor Size

6

< 100 nm1 cm

1947 2000s

~ 2 mm

1961

revolution evolution

Xing Sheng, EE@Tsinghua

CMOS Process

7

'Lithography is the cornerstone of modern IC technology'---- Silicon VLSI, Plummer et al.,

Xing Sheng, EE@Tsinghua

Lithography

8

litho- 石头-graph 图案

石版画

Xing Sheng, EE@Tsinghua

Photography

9

曝光

显影

打印

Xing Sheng, EE@Tsinghua

Photolithography(光刻)

10

Xing Sheng, EE@Tsinghua

Photolithography(光刻)

11

光刻胶

掩膜

光源

Video

Xing Sheng, EE@Tsinghua

12

Exposure (曝光)

接触式 接近式 投影式

Xing Sheng, EE@Tsinghua

13

Exposure (曝光)

stepper (步进投影)

mass chip production in industry

Video

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

14

write by laser or electron beam

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

15

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

16

Layout design CAD tools

see examples

Transparency film flexible mask

Chrome mask glass substrate

chrome coating

Example

transparency film chrome mask

design layout

Xing Sheng, EE@Tsinghua

17

Resolution

ideal case actual case

Xing Sheng, EE@Tsinghua

18

Resolution

diffraction: light is a wave!

Xing Sheng, EE@Tsinghua

19

Resolution

the smaller, the harder

Xing Sheng, EE@Tsinghua

20

Resolution

contact and proximity mode

gR ~

R resolution wavelengthg gap size

smaller , g ---> smaller R

UV, DUV, EUV, x-ray, ...g minimum: resist film thickness

Xing Sheng, EE@Tsinghua

21

Resolution

projection mode

Xing Sheng, EE@Tsinghua

22

Resolution

modulation transfer function (MTF)

minmax

minmax

II

IIMTF

ideal MTF = 1poor MTF ~ 0

MTF = ?

Xing Sheng, EE@Tsinghua

23

Resolution

diffraction pattern (Airy's disk)

Xing Sheng, EE@Tsinghua

24

Resolution

Rayleigh Criterion:the first diffraction minimum of one source

coincides with the maximum of another

Xing Sheng, EE@Tsinghua

25

Resolution

smaller , larger NA ---> smaller resolution

UV, DUV, EUV, x-ray, ...n refractive index (air: 1, oil: 1.4~1.7)sin maximum = 1.0

resolution

sin6.0~n

R

Xing Sheng, EE@Tsinghua

26

Spatial Coherence

Xing Sheng, EE@Tsinghua

27

Resolution Improvement

sin6.0~n

R decrease increase increase n???

Xing Sheng, EE@Tsinghua

28

Large Aperture

FAST (天眼,贵州)

Xing Sheng, EE@Tsinghua

29

Immersion Lithography

n = 1.0n > 1.0

If high index fluid n = 1.7,resolution is reduced by ~40%

B. J. Lin (林本坚)2018 未来科学大奖

B. J. Lin, Microelec. Eng. 6, 31 (1987)

sin6.0~n

R

Xing Sheng, EE@Tsinghua

30

Phase Shift Mask

Xing Sheng, EE@Tsinghua

31

Double Patterning

Xing Sheng, EE@Tsinghua

32

Double Patterning

Xing Sheng, EE@Tsinghua

33

Multiple Patterning

Xing Sheng, EE@Tsinghua

34

Optical Proximity Correction (OPC)

mask resist

Xing Sheng, EE@Tsinghua

35

Resolution Improvement

sin6.0~n

R

For deep-UV, = 193 nm

17 nm+ immersion (n = 1.7)

+ quad pattern

34 nm+ immersion (n = 1.7)

+ double pattern

......

68 nm+ immersion (n = 1.7)

116 nmnormal R

Xing Sheng, EE@Tsinghua

Manufacturing Gets Complicated

36

multiple patterning steps

Xing Sheng, EE@Tsinghua

37

Depth of Focus (DOF)

depth of focus(DOF)

Xing Sheng, EE@Tsinghua

38

Depth of Focus (DOF)on focusoff focus

trade-off between resolution and DOF

off focuslarge NA (光圈)

Xing Sheng, EE@Tsinghua

Light Sources

39

Mercury (Hg) arc lamp g-line 436 nm, h-line 405 nm, i-line 365 nm

sin6.0~n

R

Xing Sheng, EE@Tsinghua

Light Sources

40

Mercury (Hg) arc lamp g-line 436 nm, h-line 405 nm, i-line 365 nm

yellow light in cleanroom

Xing Sheng, EE@Tsinghua

Light Sources

41

Deep UV (DUV) excimer lasers: KrF (248 nm), ArF (193 nm)

Extreme UV (EUV) Tin (Sn) plasma lasers, 13.5 nm

X-ray 0.01 ~ 10 nm

Electron beam (E-beam)

...

sin6.0~n

R

Xing Sheng, EE@Tsinghua

Optics for EUV

42

at EUV ( = 13.5 nm):glass is not transparentmetal is not reflectiveeven air is absorptive

quartz glass metals

air

Xing Sheng, EE@Tsinghua

Optics for EUV

43

reflective masks

multilayer mirrors(Mo/Si)

Xing Sheng, EE@Tsinghua

Optics

44

UV (365 nm) EUV (13.5 nm)

optical loss > 95%

everything in the vacuum!

Xing Sheng, EE@Tsinghua

Equipment

45

UV (365 nm)resolution ~ 2 mprice ~ 200,000 RMB

EUV (13.5 nm)resolution ~ 10 nmprice ~ 100,000,000 $$$

Xing Sheng, EE@Tsinghua

X-ray Lithography

46

wavelength 0.01~10 nm

Xing Sheng, EE@Tsinghua

Electron Beam (Ebeam) Lithography

47

similar to a scanning electron microscope (SEM)

wavelength

V

23.1)nm(

wave-particle duality

momentum

h

Example:for V = 30 kV, = 0.007 nm

Xing Sheng, EE@Tsinghua

The resolution is limited by secondary electrons higher V -> lower resolution

resolution ~ 10 nm

No mask for electron, only direct writing! slow process

Only for research purposes now

Electron Beam (Ebeam) Lithography

48

proximity effect

Video

Xing Sheng, EE@Tsinghua

NanoPhotonics

49

Xing Sheng, EE@Tsinghua

Optical Cloak

50J. Valentine, et al., Nature Mater. 8, 568 (2008)

Xing Sheng, EE@Tsinghua

Metalens

51

40 m 300 nm

M. Khorasaninejad, et al., Science 352, 1190 (2016)

Xing Sheng, EE@Tsinghua

Top Down vs. Bottom Up

52

Xing Sheng, EE@Tsinghua

Bottom Up Approaches

53

nanowire growth block copolymer assembly

quantum dot anodized alumina

Xing Sheng, EE@Tsinghua

Nano Structures in Nature

54E. Armstrong and C. O'Dwyer, J. Mater. Chem. C 3, 6109 (2015)

top related