operational implementation strategies

Post on 12-Jan-2016

52 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Topic 3. Operational Implementation Strategies. Moderator: Bryan Franz. Goals. Identification of issues unique to satellite retrieval of IOPs Understanding of satellite R rs generation Agreement on common IOP model inputs (a w & b bw ) - PowerPoint PPT Presentation

TRANSCRIPT

1IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Operational Implementation Operational Implementation StrategiesStrategies

Moderator: Bryan Franz

Topic 3

2IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

GoalsGoals

Identification of issues unique to satellite retrieval of IOPs

Understanding of satellite Rrs generation

Agreement on common IOP model inputs (aw & bbw)

Agreement on algorithm failure conditions & masking

Understanding impact of IOP inversion at L2 versus L3

3IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Satellite FocusSatellite Focus

Multiple sensors - varying wavelength sets SeaWIFS, MODIS, MERIS --> OCM-2, VIIRS, OLCI Multiple data processing systems (NASA, ESA, ISRO)

Global application wide range of water classes, distribution dominated by low-Ca water

large data volumes, want best IOP algorithm that is “practical”

Imperfect Lw retrieval satellite sensor calibration & noise atmospheric correction error

Rrs normalization

wide range of viewing geometry (0 < v < 60)

transition through interface

4IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Multi-Sensor Processing FrameworkMulti-Sensor Processing Framework

Level-1 to Level-2(common algorithms)

SeaWiFS L1A- or -

MODISA L1BMODIST L1B

OCTS L1AMOS L1BOSMI L1ACZCS L1AMERIS L1BOCM L1B

Level-2 to Level-3

Level-2 File

Level-3 GlobalProduct

observed radiances

AOPsRrs()

IOPsa(), bb()

Level-2 FileLevel-2 File

atmospheric correction

Lw normalization

derived products

flags (failure & quality)

observedLt()

, 0,

spatial averaging

temporal averaging

masking

5IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

RRrsrs from Satellite Radiances from Satellite Radiances

td() Lw() = Lt() / tg() / fp() - TLg() - tLf() - Lr() - La()

TOA gas pol glint whitecap air aerosol

nLw() = Lw() / td0() 0 f0

Sun full-band water-leaving radiance normalized to non-attenuating atmosphere with Sun overhead

fb

nLw() = nLw() ffb correct from full-band to nominal

10-nm center-band via Morel model

nLw() = nLw() ex correct for Fresnel reflection

refraction and inhomogeneity of subsurface light field via LUT

0 (f/Q)0

(f/Q)

Rrs() = nLw() / F0 () ex ex solar irradiance from Thuillier 2002

10-nm square-band-pass average

6IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

IOP Model Implementation IssuesIOP Model Implementation Issues

transition across air/sea interface Lee et al. 2002

pure sea-water values (aw & bbw)

aw: Pope & Fry, Kou et al. 1993, bbw: Smith & Baker 1981

10-nm square band-pass average (consistent with Rrs retrieval)

salinity & temperature sensitivity significant impact on IOP retrieval when aw & bbw = f(T,S)

need to identify ancillary data sources

Rrs(0−) =

Rrs(0+)

0.52 +1.7Rrs(0+)

7IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Inversion Methods and EfficiencyInversion Methods and Efficiency

sequential (class 1 & 3)

model-specific (wavelength-specific) may be iterative

simultaneous (class 2)

Matrix inversion– Lower-Upper Decomposition (LUD)– Singular-Valued Decomposition (SVD)

Iterative cost-function minimization– Levenburg-Marquart (LM)– Downhill Simplex (Amoeba, AMB)

None 38

QAA 39

GSM SVD 42

GSM LM 55

GSM AMB 98

Algorithm Time (secs)

one SeaWIFS GAC orbit

8IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

IOP Models Implemented at NASAIOP Models Implemented at NASA

GSM (Garver-Siegel-Maritorena) a, aph, adg, bb, bbp, Ca

QAA (Quasi-Analytical Algorithm) a, aph, adg, bb, bbp

LAS (Loisel and Stramski) a, b, c, bb, bbp

PML (Plymouth Marine Labs) a, aph, adg, bb, bbp

HAL (Hoge & Lyon, via GIOP) a, aph, adg, bb, bbp

GIOP (Generalized IOP Model) a, aph, adg, bb, bbp, Ca, flags, , S

TBD: NIWA Boss & Roesler

9IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Generalized IOP Model (GIOP)Generalized IOP Model (GIOP)

specify sensor wavelengths to fit e.g., 412,443,490,510,555 e.g., 412,490,555

select aph form and set params

tabulated: , ap*()

gaussian: ,

select adg form and set params

exponential: , S

select bbp form and set params

power law: , power law: , via Hoge & Lyon

power law: , via QAA

select Rrs[0-] to bb/(a+bb) quadratic: g1, g2 f/Q: (tbd)

specify inversion method Levenburg-Marquart Amoeba (downhill simplex) Lower-Upper Decomposition Singular-Value Decomposition

specify output products a (), aph (), adg (), bb (), bbp ()

= any sensor wavelength(s)

Ca (given ap* at ) (dynamic model params) internal flags

10IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

specify sensor wavelengths to fit e.g., 412,443,490,510,555 e.g., 412,490,555

select aph form and set params

tabulated: , ap*()

gaussian: ,

select adg form and set params

exponential: , S

select bbp form and set params

power law: , power law: , via Hoge & Lyon

power law: , via QAA

Generalized IOP Model (GIOP)Generalized IOP Model (GIOP)

select Rrs[0-] to bb/(a+bb) quadtratic: g1, g2 f/Q: (tbd)

specify inversion method Levenburg-Marquart Amoeba (downhill simplex) Lower-Upper Decomposition Singular-Value Decomposition

specify output products a (), aph (), adg (), bb (), bbp ()

= any sensor wavelength(s)

Ca (given ap* at ) (dynamic model params) internal flags

5-Band GSM

11IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

specify sensor wavelengths to fit e.g., 412,443,490,510,555 e.g., 412,490,555

select aph form and set params

tabulated: , ap*()

gaussian: ,

select adg form and set params

exponential: , S

select bbp form and set params

power law: , power law: , via Hoge & Lyon

power law: , via QAA

Generalized IOP Model (GIOP)Generalized IOP Model (GIOP)

select Rrs[0-] to bb/(a+bb) quadratic: g1, g2 f/Q: (tbd)

specify inversion method Levenburg-Marquart Amoeba (downhill simplex) Lower-Upper Decomposition Singular-Value Decomposition

specify output products a (), aph (), adg (), bb (), bbp ()

= any sensor wavelength(s)

Ca (given ap* at ) (dynamic model params) internal flags

Hoge & Lyon

12IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Flags & MasksFlags & Masks

13IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Multi-Sensor Processing FrameworkMulti-Sensor Processing Framework

Level-1 to Level-2(common algorithms)

SeaWiFS L1A- or -

MODISA L1BMODIST L1B

OCTS L1AMOS L1BOSMI L1ACZCS L1AMERIS L1BOCM L1B

Level-2 to Level-3

Level-2 File

Level-3 GlobalProduct

observed radiances

AOPsRrs()

IOPsa(), bb()

Level-2 FileLevel-2 File

atmospheric correction

Lw normalization

derived products

flags (failure & quality)

observedLt()

, 0,

spatial averaging

temporal averaging

masking

14IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Level-2 Flags & Level-3 MaskingLevel-2 Flags & Level-3 Masking

BIT NAME DESCRIPTION

01 ATMFAIL Atmospheric correction failure

02 LAND Pixel is over land

03 BADANC Reduced quality of ancillary data

04 HIGLINT High sun glint

05 HILT Observed radiance very high or saturated

06 HISATZEN High sensor view zenith angle

07 COASTZ Pixel is in shallow water

08 NEGLW Negative water-leaving radiance retrieved

09 STRAYLIGHT Straylight contamination is likely

10 CLDICE Probable cloud or ice contamination

11 COCCOLITH Coccolithophores detected

12 TURBIDW Turbid water detected

13 HISOLZEN High solar zenith

14 HITAU High aerosol optical thickness

15 LOWLWVery low water-leaving radiance (cloud shadow)

16 CHLFAIL Derived product algorithm failure

BIT NAME DESCRIPTION

17 NAVWARN Navigation quality is reduced

18 ABSAER possible absorbing aerosol

19 TRICHO Possible trichodesmium contamination

20 MAXAERITER Aerosol iterations exceeded max

21 MODGLINT Moderate sun glint contamination

22 CHLWARN Derived product quality is reduced

23 ATMWARN Atmospheric correction is suspect

24 DARKPIXEL Rayleigh-subtracted radiance is negative

25 SEAICE Possible sea ice contamination

26 NAVFAIL Bad navigation

27 FILTER Pixel rejected by user-defined filter

28 SSTWARN SST quality is reduced

29 SSTFAIL SST quality is bad

30 HIPOL High degree of polarization

31 PRODFAIL Derived product failure

32 OCEAN Not cloud or land

Level-2 flags used as masks in Level-3 processing

15IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Proposed Conditions for IOP Product FailureProposed Conditions for IOP Product Failure

Rrs < 0 in any required band?

not required for Rrs() minimization

required for matrix inversion (no positive roots in Gordon quad.) required for band ratio component algorithms (e.g., QAA, HAL)

Failure within model computation e.g., inputs out of range of LUTs, divide by zero errors

Tests on IOP retrievals (for 400 < < 600)

0.95 aw() < a() < 5.0

-0.05 aw() < aph() < 5.0

-0.05 aw() < adg() < 5.0

0.95 bbw() < bb() < 0.015

-0.05 bbw() < bbp() < 0.015

initial proposal employed in some of our global analyses for this workshop

or Rrs < -()

16IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

L2 vs L3 InversionL2 vs L3 Inversion

17IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

IOP Inversion at Level-2IOP Inversion at Level-2

Level-1 to Level-2(common algorithms)

SeaWiFS L1A- or -

MODISA L1BMODIST L1B

OCTS L1AMOS L1BOSMI L1ACZCS L1AMERIS L1BOCM L1B

Level-2 to Level-3

Level-2 File

Level-3 GlobalProduct

observed radiances

AOPsRrs()

IOPsa(), bb()

Level-2 FileLevel-2 File

atmospheric correction

Lw normalization

derived products

flags (failure & quality)

observedLt()

, 0,

Standard NASA Approach

18IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

IOP Inversion at Level-3IOP Inversion at Level-3

Level-1 to Level-2(common algorithms)

SeaWiFS L1A- or -

MODISA L1BMODIST L1B

OCTS L1AMOS L1BOSMI L1ACZCS L1AMERIS L1BOCM L1B

Level-2 to Level-3

Level-2 File

Level-3 GlobalProduct

observedLt()

, 0,

AOPsRrs()

Level-2 FileLevel-2 File

atmospheric correction

Lw normalization

derived products

flags (failure & quality)

Level-3 GlobalProduct

IOPsa(), bb()

averagedRrs()

, 0,

Alternative Approach

19IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

L2 vs L3 Inversion: GSM ModelL2 vs L3 Inversion: GSM Model

20IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

L2 vs L3 Inversion: GSM ModelL2 vs L3 Inversion: GSM Model

bb() < 0.015 maskGSM: Largest differences in eutrophic bb.

21IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

L2 vs L3 Inversion: QAA ModelL2 vs L3 Inversion: QAA Model

QAA: Largest differences in eutrophic a (band ratio algorithm, mean of ratio not same as ratio of means).

22IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

L2 vs L3 Inversion: PML ModelL2 vs L3 Inversion: PML Model

PML: differences everywhere (f/Q from mean geometry)

Oligotrophic Mesotrophic Eutrophica(443)

bb(443)

23IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Model-to-Model DifferencesModel-to-Model Differences

Oligotrophic Mesotrophic Eutrophica(443)

bb(443)

24IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

My ViewMy View

I like simultaneous solutions (class-1) take advantage of full spectral suite, readily adapted to multiple sensors,

easy to incorporate new ideas or alternative basis functions.

I prefer Rrs minimization to matrix inversion

can handle negative Rrs (small Rrs +/- noise)

seems less sensitive to noise (perhaps a weighting issue)

Efficiency in algorithm/inversion selection is not a primary concern satellite data processing is i/o intensive (exception Boss & Roesler)

Inversion at Level-3 vs Level-2 is not a primary concern differences between popular models are much greater

Mask all IOP products at Level-3 if: any one product exceeds valid (TBD) range

25IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

DiscussDiscuss ... ...

26IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

GoalsGoals

Identification of issues unique to satellite retrieval of IOPs

Understanding of satellite Rrs generation

Agreement on common IOP model inputs (aw & bbw)

Agreement on algorithm failure conditions & masking

Understanding impact of IOP inversion at L2 versus L3

27IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

28IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Inversion MethodInversion Method

29IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Inversion MethodsInversion Methods

sequential

model-specific may be iterative

simultaneous

Iterative cost-function minimization– Levenburg-Marquart (LM)– Downhill Simplex (Amoeba, AMB)

Matrix inversion– Lower-Upper Decomposition (LUD)– Singular-Valued Decomposition (SVD)€

[Rrsm (λ ) − Rrs(λ )]

2

σ λ2

λ

A x = b

a(λ 0) = f (Rrs(λ1),Rrs(λ 2),...)

bb (λ 0) = f (Rrs(λ 0),a(λ 0))

30IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

RRrsrs Minimization vs Matrix Inversion Minimization vs Matrix Inversion

a(443), 6-Band GSM Model, LM Fit

a(443), 5-Band GSM Model, LM Fit

a(443), 6-Band GSM Model, SVD Fit

a(443), 5-Band GSM Model, SVD Fit

5-Band = 412,443,490,510,5556-Band = 5-Band + 670

0.01 1.0a(443)

31IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Matrix Inversion: Linearization IssueMatrix Inversion: Linearization Issue

Rrs[0-] = g1 u + g2 u2

where u bb/(a+bb)

where v = 1 - 1/u

aph() + adg ( + v bbp() = -[aw() + v bbw()]

u aph() + u adg ( + (u-1) bbp() = -[u aw() + (u-1) bbw()]

a = -v bb

u a = (1 - u) bb

1) Traditional Approach: System of Equations Proportional to 1/Rrs

2) Alternate Approach: System of Equations Proportional to Rrs

Rrs[0-] = f/Q u

- or -

32IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Alternate Linearization Improves Inversion ConsistencyAlternate Linearization Improves Inversion Consistency

Linearization Method 2

a(443) GSM 6-Band

a(443) GSM 6-Band

Linearization Method 1

LM LM

SVDSVD

a(443) Global bb(443) Global

a(443) Global bb(443) Global

LM

SVD

LM

SVD

33IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Matrix Inversion Still Missing Highs in a & bMatrix Inversion Still Missing Highs in a & bbb

SVD AmoebaEutrophic Waters, 5-Band GSMLM vs SVD

NOMAD aph(443)

a(443)

bb(443)

6-Band

3-Band

5-Band

4-Band

34IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

UncertaintiesUncertainties

35IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Standard Deviation of RStandard Deviation of Rrsrs Distribution DistributionSeaWiFS March 2005SeaWiFS March 2005

412 443

510490

555 670

0.0 0.005reflectance units

36IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

MiscMisc

37IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Trophic SubsetsTrophic Subsets

Deep-Water (Depth > 1000m) Oligotrophic (Chlorophyll < 0.1)

Mesotrophic (0.1 < Chlorophyll < 1) Eutrophic (1 < Chlorophyll < 10)

38IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

SalinitySalinity

39IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

ap*ap*

I used the Bricaud function to compute aph* for 25 chl concentrations between0.05 and 3 (evenly distributed in log space), then computed the averagespectra and spit out the 10nm wide aph* values for SeaWiFS wavelengths:

In the attached plot, the average aph* spectra is the white line, the10nm (wvl-5 <= wvl < wvl+5) version is in blue, and GSM is in red.

40IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

Model Differences: Global ViewModel Differences: Global View

41IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

QAA vs 6-Band GSM: a(443) & a(555)QAA vs 6-Band GSM: a(443) & a(555)

Oligotrophic Mesotrophic Eutrophic

443

555

GSM

QAA

1.05 aw

42IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

QAA - GSM: a(443) & a(555)QAA - GSM: a(443) & a(555)

Oligotrophic Mesotrophic Eutrophic

443

555

43IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

QAA vs 6-Band GSM: bb(443) & bb(555)QAA vs 6-Band GSM: bb(443) & bb(555)

Oligotrophic Mesotrophic Eutrophic

443

555

GSM

QAA

GSM

QAA

44IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG

QAA - GSM: bb(443) & bb(555)QAA - GSM: bb(443) & bb(555)

Oligotrophic Mesotrophic Eutrophic

443

555

top related