ofdma cross layer resource controlofdma cross layer resource control 3/20 system model (๐‘ด users,...

Post on 15-Mar-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

OFDMA Cross Layer

Resource Control

Gwanmo Ku

Adaptive Signal Processing and Information Theory Research Group

Jan. 25, 2013

Outline

OFDMA Cross Layer Resource Control

Objective Functions

- System Throughput (L1), Total Transmit Power (L1)

Constraints

- Transmit Power Constraint (L1)

- Quality of Service (User Demand, Fairness), Buffer Status (L2-3)

- Stability (L2-3)

Generalized Cross Layer Control (GCLC)

Stochastic Network Optimization (SNO)

Network Utility Maximization (NUM)

2/20

OFDMA Cross Layer Resource Control

3/20

System Model (๐‘ด users, ๐‘ฒ subcarriers)

Base Station (eNB)

Mobile (UE)

๐’–๐Ÿ

๐’–๐‘ด

โ€ฆ

Higher Layer

Buffer

PHY

Higher Layer

Buffer

PHY

OFDMA

Ian Wong & Brian Evans

GCLC

๐’“๐’Ž

OFDMA Resource Control

4/20

Objective Functions

System Throughput Maximization

Transmit Power Minimization

Constraints

Transmit Power Constraint

Quality of Service

User Demands : Each User Required Data Rate

Fairness : Minimum User Data Rate

Stability based on Buffer Status

OFDMA Resource Allocation

5/20

Notations

๐’Ž โˆˆ {๐Ÿ,โ€ฆ ,๐‘ด} User Index

๐’Œ โˆˆ {๐Ÿ,โ€ฆ ,๐‘ฒ} Subcarrier Index

๐’‘๐’Ž,๐’Œ : Power Control Coefficient

๐œธ๐’Ž,๐’Œ : SINR for user index ๐’Ž and subcarrier index ๐’Œ

๐‘ท๐‘ป Total Transmit Power Constraint

๐’“๐’Ž Required Each User Data Rate

๐’“๐ŸŽ Required Minimum User Data Rate

๐’ƒ๐’Ž Buffer Service Rate

๐‘น๐’Ž Overall Coding Rate for User ๐’Ž

OFDMA Resource Allocation

6/20

System Throughput Maximization

Power Control

๐’‘๐’Ž,๐’Œ = argmaxE ๐‘ค๐‘š

๐‘€

๐‘š=1

log(1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜)

๐พ

๐‘˜=1

๐’๐ฒ๐ฌ๐ญ๐ž๐ฆ ๐“๐ก๐ซ๐จ๐ฎ๐ ๐ก๐ฉ๐ฎ๐ญ

๐ธ ๐‘๐‘š,๐‘˜

๐พ

๐‘˜=1

๐‘€

๐‘š=1

โ‰ค ๐‘ƒ๐‘‡

s.t

max (๐›ฝ๐‘š๐‘…๐‘š๐‘Ÿ0, ๐›ฝ๐‘š๐‘…๐‘š๐‘Ÿ๐‘š) โ‰ค ๐‘ค๐‘š log(1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜)

๐พ

๐‘˜=1

Stability

OFDMA Resource Allocation

7/20

Work by Ian Wong and Brian Evans

System Throughput Maximization with Tx. Power Constraint

๐‘๐‘š,๐‘˜ = argmax ๐„ ๐‘ค๐‘š

๐‘€

๐‘š=1

log(1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜)

๐พ

๐‘˜=1

๐„ ๐‘๐‘š,๐‘˜

๐พ

๐‘˜=1

๐‘€

๐‘š=1

โ‰ค ๐‘ƒ๐‘‡

๐‘ค๐‘š

๐‘€

๐‘š=1

= 1

s.t

OFDMA Resource Allocation

8/20

Optimization Framework

Dual Optimization

๐ฟ ๐‘ โ‹… , ๐œ† = ๐„ ๐‘ค๐‘š

๐‘€

๐‘š=1

log(1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜)

๐พ

๐‘˜=1

+๐œ† ๐‘ƒ๐‘‡ โˆ’ ๐„( ๐‘๐‘š,๐‘˜

๐พ

๐‘˜=1

)

๐‘€

๐‘š=1

๐‘”โˆ— = min๐œ†โ‰ฅ0

ฮ˜(๐œ†)

ฮ˜ ๐œ† = max๐‘ โ‹… โˆˆ๐‘ƒ๐‘‡

๐ฟ(๐‘ โ‹… , ๐œ†)

OFDMA Resource Allocation

9/20

Dual

ฮ˜ ๐œ† = max๐‘ โ‹… โˆˆ๐‘ƒ๐‘‡

๐ฟ(๐‘ โ‹… , ๐œ†)

= ๐œ†๐‘ƒ๐‘‡ + max๐‘ โ‹… โˆˆ๐‘ƒ๐‘‡

๐„ ๐‘ค๐‘š log 1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜ โˆ’ ๐œ†๐‘๐‘š,๐‘˜

๐‘€

๐‘š=1

๐พ

๐‘˜=1

= ๐œ†๐‘ƒ๐‘‡ + max๐‘๐‘˜ โ‹… โˆˆ๐‘ƒ๐‘˜

๐„ ๐‘ค๐‘š log 1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜ โˆ’ ๐œ†๐‘๐‘š,๐‘˜

๐‘€

๐‘š=1

๐พ

๐‘˜=1

= ๐œ†๐‘ƒ๐‘‡ + ๐ธ max๐‘๐‘˜ โ‹… โˆˆ๐‘ƒ๐‘˜

๐‘ค๐‘š log 1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜ โˆ’ ๐œ†๐‘๐‘š,๐‘˜

๐‘€

๐‘š=1

๐พ

๐‘˜=1

= ๐œ†๐‘ƒ๐‘‡ + ๐พ๐ธ๐›พ๐‘˜max

๐‘šโˆˆ{1,โ€ฆ,๐‘€}max

๐‘๐‘š,๐‘˜โ‰ฅ0(๐‘ค๐‘š log 1 + ๐‘๐‘š,๐‘˜๐›พ๐‘š,๐‘˜ โˆ’ ๐œ†๐‘๐‘š,๐‘˜)

multilevel water filling

๐‘š๐‘Ž๐‘ฅ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ข๐‘ ๐‘’๐‘Ÿ ๐‘ ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›

OFDMA Resource Allocation

10/20

A Simple Closed Form

๐‘ ๐‘š,๐‘˜(๐œ†) =1

๐›พ0,๐‘š ๐œ†โˆ’

1

๐›พ๐‘š,๐‘˜

+

๐‘ฅ + = max(0, ๐‘ฅ)

๐›พ0,๐‘š ๐œ† =๐œ† ln 2

๐‘ค๐‘š Cutoff value

๐‘”โˆ— = min๐œ†โ‰ฅ0

[๐œ†๐‘ƒ๐‘‡ + ๐พ ๐„๐›พ๐‘˜๐‘”๐‘˜ ๐›พ๐‘˜ , ๐œ† ]

๐‘”๐‘˜ ๐›พ๐‘˜ , ๐œ† = max๐‘šโˆˆ{1,โ€ฆ,๐‘€}

{๐‘”๐‘š,๐‘˜ ๐›พ๐‘š,๐‘˜ , ๐œ† }

๐‘”๐‘š,๐‘˜ ๐›พ๐‘š,๐‘˜ , ๐œ† = ๐‘ค๐‘š log 1 + ๐‘ ๐‘š,๐‘˜ ๐œ† โˆ’ ๐œ† ๐‘ ๐‘š,๐‘˜ ๐œ†

OFDMA Resource Allocation

11/20

Optimal Solution

๐‘”๐‘š,๐‘˜ ๐›พ๐‘š,๐‘˜ , ๐œ† = ๐‘ค๐‘š log 1 + ๐‘ ๐‘š,๐‘˜ ๐œ† โˆ’ ๐œ† ๐‘ ๐‘š,๐‘˜ ๐œ†

=๐‘ค๐‘š

ln 2ln

๐›พ๐‘š,๐‘˜

๐›พ0,๐‘š ๐œ†โˆ’

๐‘ค๐‘š

ln 2+

๐œ†

๐›พ๐‘š,๐‘˜๐‘ข(๐›พ๐‘š,๐‘˜ โˆ’ ๐›พ0,๐‘š ๐œ† )

๐‘ข ๐‘ฅ = 0 ๐‘ฅ < 01 ๐‘ฅ โ‰ฅ 0

๐œ†โˆ— = ๐‘Ž๐‘Ÿ๐‘”min๐œ†โ‰ฅ0

[๐œ†๐‘ƒ + ๐พ ๐‘”๐‘˜๐‘“๐‘”๐‘˜๐‘”๐‘˜ ๐‘‘๐‘”๐‘˜

โˆž

0

]

๐‘ ๐‘š,๐‘˜(๐œ†โˆ—) =

1

๐›พ0,๐‘š ๐œ†โˆ—โˆ’

1

๐›พ๐‘š,๐‘˜

+

๐‘๐‘š,๐‘˜โˆ— = ๐‘ ๐‘š,๐‘˜ ๐œ†โˆ— 1(๐‘š = ๐‘š๐‘˜

โˆ— )

๐‘š๐‘˜โˆ— = argmax

๐‘šโˆˆ{1,โ€ฆ,๐‘€}๐‘ค๐‘š log 1 + ๐‘ ๐‘š,๐‘˜ ๐œ†โˆ— ๐›พ๐‘š,๐‘˜ โˆ’ ๐œ†โˆ—๐‘ ๐‘š,๐‘˜ (๐œ†โˆ—)

Cross Layer Control

12/20

Generalized Cross Layer Control (GCLC)

Proposed by Georgiadis, Neely, and Tassiulas

Focus on Stability based on Queuing Statistics

โ€ข Stochastic Network Optimization

โ€ข Network Utility Maximization

Network Stability

โ€ข Differential Equation of Queuing Statistics

โ€ข Lyapunov Stability

Cross Layer Control

13/20

Stochastic Network Optimization

Buffer for user ๐‘š

Arrival Rate ๐€๐’Ž Service Rate ๐๐’Ž

Backlog Queue ๐‘ธ๐’Ž (๐’•)

Network State Variable ๐‘บ(๐’•)

Control Action ๐‘ฐ ๐’• โˆˆ ๐‘ฐ๐‘บ(๐’•) feasible control region under ๐‘บ(๐’•)

๐ ๐‘ก๐‘† ๐‘ก ,๐ผ(๐‘ก)

๐(๐‘ก + 1)

Cross Layer Control

14/20

Stochastic Network Optimization

Stability Issue

๐‘„๐‘š ๐‘ก + 1 โ‰ค max ๐‘„๐‘š ๐‘ก โˆ’ ๐‘…๐‘š๐‘œ๐‘ข๐‘ก ๐ผ ๐‘ก , ๐‘† ๐‘ก , 0 + ๐‘…๐‘š

๐‘–๐‘›(๐ผ ๐‘ก , ๐‘† ๐‘ก )

๐‘ถ๐’–๐’•๐’ˆ๐’๐’Š๐’๐’ˆ ๐‘ธ๐’–๐’†๐’–๐’† ๐‘ฌ๐’๐’•๐’†๐’“๐’Š๐’๐’ˆ ๐‘ธ๐’–๐’†๐’–๐’†

lim๐‘กโ†’ โˆž

sup1

๐‘ก ๐„{๐‘„๐‘š ๐œ }

๐‘กโˆ’1

๐œ=0

< โˆž

Lyapunov Stability

If there exist ๐‘ฉ > ๐ŸŽ and ๐ > ๐ŸŽ, such that for all

times slot ๐’• we have :

Then network is strongly stable, and

๐„ โˆ† ๐‘ก Q ๐‘ก โ‰ค ๐ต โˆ’ ๐œ– ๐‘„๐‘š(๐‘ก)

๐‘€

๐‘š=1

lim๐‘กโ†’ โˆž

sup1

๐‘ก ๐„{Q ๐œ }

๐‘กโˆ’1

๐œ=0

<๐ต

๐œ–

15/20

Cross Layer Control

16/20

Find ๐‘ฐ(๐’•)

Find ๐šฒ by Lyapunov Drift

Drift Definition

๐ผโˆ— ๐‘ก = argmax๐ผ ๐‘ก โˆˆ๐ˆ๐‘†(๐‘ก)

๐‘Š๐‘Ž๐‘โˆ— ๐‘ก ๐œ‡๐‘Ž๐‘

โˆ— (๐‘ก)

๐‘Ž๐‘

๐‘Š๐‘Ž๐‘โˆ— ๐‘ก = max

๐œ‡๐‘Ž๐‘

๐‘„๐‘Ž ๐‘ก โˆ’ ๐‘„๐‘ ๐‘ก +

maximum queue backlog differential

โˆ† ๐‘ก = ๐ฟ ๐‘ก + 1 โˆ’ ๐ฟ(๐‘ก)

๐ฟ ๐‘ก =1

2 ๐‘„๐‘š

2 (๐‘ก)

๐‘€

๐‘š=1

Lyapunov Drift

17/20

โˆ† ๐‘ก = ๐ฟ ๐‘ก + 1 โˆ’ ๐ฟ(๐‘ก)

=1

2 [๐‘„๐‘š

2 ๐‘ก + 1 โˆ’

๐‘€

๐‘š=1

๐‘„๐‘š2 (๐‘ก)]

After applying ๐‘„๐‘š2 (๐‘ก + 1)

Find Lyapunov Bound with Conditional Expectation

โˆ† ๐‘ก ๐ ๐‘ก โ‰ค โ€ฆ

lim๐‘กโ†’ โˆž

sup1

๐‘ก ๐„{๐‘„๐‘š ๐œ }

๐‘กโˆ’1

๐œ=0

< โˆž

Network Utility Maximization (NUM)

18/20

Rate ๐ซ โˆˆ ๐šฒ with Maximum Utility

๐ซโˆ— = argmax๐ซโ‰ค๐›Œ

๐‘” ๐ซ |๐ซ โˆˆ ๐šฒ

๐‘”(๐ซ) : Utility Function

Minimize Cost

Generalized Cross Layer Control

19/20

General Form of GCLC

Cost Variable Vector ๐ฑ : Maximum cost constraints ๐

Utility Variable Vector ๐ฒ :Minimum utility constraints ๐‡

Stable Region ๐ซ โˆˆ ๐šฒ

โ€ข Arrival Rate Vector ๐›Œ

Minimize net cost

โ€ข Natural cost function ๐’‡(๐’™) and Concave Utility function ๐’ˆ(๐’š)

min๐ซโ‰ค๐›Œ

๐‘“ ๐ฑ โˆ’ ๐‘”(๐ฒ)|๐ช ๐ฑ โ‰ค ๐, ๐ก ๐ฒ โ‰ฅ ๐‡, ๐ซ โˆˆ ๐šฒ

OFDMA Resource Control via GCLC

20/20

OFDMA via GCLC

Cost Variable Vector ๐ฑ : power coefficients

โ€ข ๐ = ๐๐“ : Total Power Constraint

Utility Variable Vector ๐ฒ : user data rate ๐ฒ = ๐ซ

โ€ข ๐‡ : Quality of Service (User demands, Fairness)

Stable Region based on Queuing Statistics

Minimize net cost : Maximize System Throughput

min๐ซโ‰ค๐›Œ

๐‘“ ๐ฑ โˆ’ ๐‘”(๐ฒ)|๐ช ๐ฑ โ‰ค ๐, ๐ก ๐ฒ โ‰ฅ ๐‡, ๐ซ โˆˆ ๐šฒ

top related