numarical metoud lecture 01

Post on 15-Feb-2016

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

it is introduction lecture

TRANSCRIPT

ECEG-2112 : Computational Methods

Introduction to Computational Methods and Taylor Series

Lecture 1:

1

Lecture 1Introduction to Computational

Methods

What are COMPUTATIONAL METHODS? Why do we need them? Topics covered in ECEG-2112.

Reading Assignment: Pages 3-10 of textbook

What are COMPUTATIONAL METHODS? Why do we need them? Topics covered in ECEG-2112.

Reading Assignment: Pages 3-10 of textbook

2

Numerical MethodsNumerical Methods:

Algorithms that are used to obtain numericalsolutions of a mathematical problem.

Why do we need them?1. No analytical solution exists,2. An analytical solution is difficult to obtain

or not practical.

Numerical Methods:Algorithms that are used to obtain numericalsolutions of a mathematical problem.

Why do we need them?1. No analytical solution exists,2. An analytical solution is difficult to obtain

or not practical.

3

What do we need?Basic Needs in the Numerical Methods: Practical:

Can be computed in a reasonable amount of time. Accurate:

Good approximate to the true value, Information about the approximation error

(Bounds, error order,… ).

Basic Needs in the Numerical Methods: Practical:

Can be computed in a reasonable amount of time. Accurate:

Good approximate to the true value, Information about the approximation error

(Bounds, error order,… ).

4

Outlines of the Course Taylor Theorem Number

Representation Solution of nonlinear

Equations Interpolation Numerical

Differentiation Numerical Integration

Solution of linearEquations

Least Squares curvefitting

Solution of ordinarydifferential equations

Solution of Partialdifferential equations

Taylor Theorem Number

Representation Solution of nonlinear

Equations Interpolation Numerical

Differentiation Numerical Integration

Solution of linearEquations

Least Squares curvefitting

Solution of ordinarydifferential equations

Solution of Partialdifferential equations

5

Solution of Nonlinear Equations Some simple equations can be solved analytically:

Many other equations have no analytical solution:

31

)1(2

)3)(1(444solutionAnalytic

034

2

2

xandx

roots

xx

Some simple equations can be solved analytically:

Many other equations have no analytical solution:

31

)1(2

)3)(1(444solutionAnalytic

034

2

2

xandx

roots

xx

solutionanalyticNo052 29

xex

xx

6

Methods for Solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method

o Bisection Method

o Newton-Raphson Method

o Secant Method

7

Solution of Systems of Linear Equations

unknowns.1000inequations1000

have weifdoWhat to

123,2

523,3

:asitsolvecanWe

52

3

12

2221

21

21

xx

xxxx

xx

xx

unknowns.1000inequations1000

have weifdoWhat to

123,2

523,3

:asitsolvecanWe

52

3

12

2221

21

21

xx

xxxx

xx

xx

8

Cramer’s Rule is Not Practical

this.compute toyears10 thanmoreneedscomputersuperA

needed.aretionsmultiplica102.3system,30by30asolveTo

tions.multiplica

1)N!1)(N(Nneed weunknowns,N withequationsNsolveTo

problems.largeforpracticalnotisRulesCramer'But

2

21

11

51

31

,1

21

11

25

13

:system thesolve tousedbecanRulesCramer'

20

35

21

xx

this.compute toyears10 thanmoreneedscomputersuperA

needed.aretionsmultiplica102.3system,30by30asolveTo

tions.multiplica

1)N!1)(N(Nneed weunknowns,N withequationsNsolveTo

problems.largeforpracticalnotisRulesCramer'But

2

21

11

51

31

,1

21

11

25

13

:system thesolve tousedbecanRulesCramer'

20

35

21

xx

9

Methods for Solving Systems of LinearEquations

o Naive Gaussian Elimination

o Gaussian Elimination with ScaledPartial Pivoting

o Algorithm for Tri-diagonalEquations

o Naive Gaussian Elimination

o Gaussian Elimination with ScaledPartial Pivoting

o Algorithm for Tri-diagonalEquations

10

Curve Fitting Given a set of data:

Select a curve that best fits the data. Onechoice is to find the curve so that the sumof the square of the error is minimized.

x 0 1 2

y 0.5 10.3 21.3

Given a set of data:

Select a curve that best fits the data. Onechoice is to find the curve so that the sumof the square of the error is minimized.

x 0 1 2

y 0.5 10.3 21.3

11

Interpolation Given a set of data:

Find a polynomial P(x) whose graphpasses through all tabulated points.

xi 0 1 2

yi 0.5 10.3 15.3

Given a set of data:

Find a polynomial P(x) whose graphpasses through all tabulated points.

xi 0 1 2

yi 0.5 10.3 15.3

tablein theis)( iii xifxPy 12

Methods for Curve Fittingo Least Squares

o Linear Regressiono Nonlinear Least Squares Problems

o Interpolationo Newton Polynomial Interpolationo Lagrange Interpolation

o Least Squareso Linear Regressiono Nonlinear Least Squares Problems

o Interpolationo Newton Polynomial Interpolationo Lagrange Interpolation

13

Integration Some functions can be integrated

analytically:

?

:solutionsanalyticalnohavefunctionsmanyBut

42

1

2

9

2

1

0

3

1

23

1

2

dxe

xxdx

ax ?

:solutionsanalyticalnohavefunctionsmanyBut

42

1

2

9

2

1

0

3

1

23

1

2

dxe

xxdx

ax

14

Methods for Numerical Integration

o Upper and Lower Sums

o Trapezoid Method

o Romberg Method

o Gauss Quadrature

o Upper and Lower Sums

o Trapezoid Method

o Romberg Method

o Gauss Quadrature

15

Solution of Ordinary Differential Equations

only.casesspecial

foravailablearesolutionsAnalytical*

equations. thesatisfies thatfunctionais

0)0(;1)0(

0)(3)(3)(

:equationaldifferenti theosolution tA

x(t)

xx

txtxtx

only.casesspecial

foravailablearesolutionsAnalytical*

equations. thesatisfies thatfunctionais

0)0(;1)0(

0)(3)(3)(

:equationaldifferenti theosolution tA

x(t)

xx

txtxtx

16

Solution of Partial Differential Equations

Partial Differential Equations are moredifficult to solve than ordinary differentialequations:

)sin()0,(,0),1(),0(

022

2

2

2

xxututut

u

x

u

)sin()0,(,0),1(),0(

022

2

2

2

xxututut

u

x

u

17

Summary Numerical Methods:

Algorithms that areused to obtainnumerical solution of amathematical problem.

We need them whenNo analytical solutionexists or it is difficultto obtain it.

Solution of Nonlinear Equations Solution of Linear Equations Curve Fitting

Least Squares Interpolation

Numerical Integration Numerical Differentiation Solution of Ordinary Differential

Equations Solution of Partial Differential

Equations

Topics Covered in the Course Numerical Methods:

Algorithms that areused to obtainnumerical solution of amathematical problem.

We need them whenNo analytical solutionexists or it is difficultto obtain it.

Solution of Nonlinear Equations Solution of Linear Equations Curve Fitting

Least Squares Interpolation

Numerical Integration Numerical Differentiation Solution of Ordinary Differential

Equations Solution of Partial Differential

Equations

18

Number Representation Normalized Floating Point Representation Significant Digits Accuracy and Precision Rounding and Chopping

Reading Assignment: Chapter 3

Number Representation and Accuracy

Number Representation Normalized Floating Point Representation Significant Digits Accuracy and Precision Rounding and Chopping

Reading Assignment: Chapter 3

19

Representing Real Numbers You are familiar with the decimal system:

Decimal System: Base = 10 , Digits (0,1,…,9)

Standard Representations:

21012 10510410210110345.312

You are familiar with the decimal system:

Decimal System: Base = 10 , Digits (0,1,…,9)

Standard Representations:

partpart

fractionintegralsign

54.213

20

Normalized Floating Point Representation Normalized Floating Point Representation:

Scientific Notation: Exactly one non-zero digit appearsbefore decimal point.

Advantage: Efficient in representing very small or verylarge numbers.

exponentsigned:,0

exponentmantissasign

104321.

nd

nffffd

Normalized Floating Point Representation:

Scientific Notation: Exactly one non-zero digit appearsbefore decimal point.

Advantage: Efficient in representing very small or verylarge numbers.

exponentsigned:,0

exponentmantissasign

104321.

nd

nffffd

21

Binary System

Binary System: Base = 2, Digits {0,1}

exponentsignedmantissasign

2.1 4321nffff

Binary System: Base = 2, Digits {0,1}

exponentsignedmantissasign

2.1 4321nffff

10)625.1(10)3212201211(2)101.1(

22

Fact Numbers that have a finite expansion in one numbering

system may have an infinite expansion in anothernumbering system:

You can never represent 1.1 exactly in binary system.

210 ...)011000001100110.1()1.1(

Numbers that have a finite expansion in one numberingsystem may have an infinite expansion in anothernumbering system:

You can never represent 1.1 exactly in binary system.

210 ...)011000001100110.1()1.1(

23

IEEE 754 Floating-Point Standard Single Precision (32-bit representation) 1-bit Sign + 8-bit Exponent + 23-bit Fraction

Double Precision (64-bit representation) 1-bit Sign + 11-bit Exponent + 52-bit Fraction

S Exponent8 Fraction23

Single Precision (32-bit representation) 1-bit Sign + 8-bit Exponent + 23-bit Fraction

Double Precision (64-bit representation) 1-bit Sign + 11-bit Exponent + 52-bit Fraction

S Exponent11 Fraction52

(continued)

24

IEEE 754 Floating-Point Standard

25

Example

26

Significant Digits

Significant digits are those digits that can be

used with confidence.

Single-Precision: 7 Significant Digits

1.175494… × 10-38 to 3.402823… × 1038

Double-Precision: 15 Significant Digits

2.2250738… × 10-308 to 1.7976931… × 10308

Significant digits are those digits that can be

used with confidence.

Single-Precision: 7 Significant Digits

1.175494… × 10-38 to 3.402823… × 1038

Double-Precision: 15 Significant Digits

2.2250738… × 10-308 to 1.7976931… × 10308

27

Remarks

Numbers that can be exactly represented are calledmachine numbers.

Difference between machine numbers is not uniform

Sum of machine numbers is not necessarily a machinenumber

Numbers that can be exactly represented are calledmachine numbers.

Difference between machine numbers is not uniform

Sum of machine numbers is not necessarily a machinenumber

28

Calculator Example Suppose you want to compute:

3.578 * 2.139using a calculator with two-digit fractions

3.57 * 2.13 7.60=

7.653342True answer:

29

48.9

Significant Digits - Example

30

Accuracy and Precision

Accuracy is related to the closeness to the truevalue.

Precision is related to the closeness to otherestimated values.

Accuracy is related to the closeness to the truevalue.

Precision is related to the closeness to otherestimated values.

31

32

Rounding and Chopping

Rounding: Replace the number by the nearestmachine number.

Chopping: Throw all extra digits.

Rounding: Replace the number by the nearestmachine number.

Chopping: Throw all extra digits.

33

Rounding and Chopping

34

Can be computed if the true value is known:

100* valuetrue

ionapproximat valuetrue

ErrorRelativePercentAbsolute

ionapproximat valuetrue

ErrorTrueAbsolute

t

tE

Error Definitions – True Error

100* valuetrue

ionapproximat valuetrue

ErrorRelativePercentAbsolute

ionapproximat valuetrue

ErrorTrueAbsolute

t

tE

35

When the true value is not known:

100*estimatecurrent

estimatepreviousestimatecurrent

ErrorRelativePercentAbsoluteEstimated

estimatepreviousestimatecurrent

ErrorAbsoluteEstimated

a

aE

Error Definitions – Estimated Error

100*estimatecurrent

estimatepreviousestimatecurrent

ErrorRelativePercentAbsoluteEstimated

estimatepreviousestimatecurrent

ErrorAbsoluteEstimated

a

aE

36

We say that the estimate is correct to ndecimal digits if:

We say that the estimate is correct to ndecimal digits rounded if:

n10Error

NotationWe say that the estimate is correct to n

decimal digits if:

We say that the estimate is correct to ndecimal digits rounded if:

n 102

1Error

37

Summary Number Representation

Numbers that have a finite expansion in one numbering systemmay have an infinite expansion in another numbering system.

Normalized Floating Point Representation Efficient in representing very small or very large numbers, Difference between machine numbers is not uniform, Representation error depends on the number of bits used in

the mantissa.

Number RepresentationNumbers that have a finite expansion in one numbering systemmay have an infinite expansion in another numbering system.

Normalized Floating Point Representation Efficient in representing very small or very large numbers, Difference between machine numbers is not uniform, Representation error depends on the number of bits used in

the mantissa.

38

Taylor Theorem

Motivation Taylor Theorem Examples

Reading assignment: Chapter 4

Motivation Taylor Theorem Examples

Reading assignment: Chapter 4

39

Motivation

We can easily compute expressions like:

?)6.0sin(,4.1computeyoudoHowBut,

)4(2

103 2

x

?)6.0sin(,4.1computeyoudoHowBut,

)4(2

103 2

x

way?practicala thisIs

sin(0.6)?computeto

definition theuse weCan

0.6

ab

40

Remark

In this course, all angles are assumed tobe in radian unless you are told otherwise.

41

Taylor Series

∑∞

0

)(

0

)(

3)3(

2)2(

'

)()(!

1)(

: writecan weconverge,series theIf

)()(!

1

...)(!3

)()(

!2)(

)()()(

:about)(ofexpansionseriesTaylorThe

k

kk

k

kk

axafk

xf

axafk

SeriesTaylor

or

axaf

axaf

axafaf

axf

∑∞

0

)(

0

)(

3)3(

2)2(

'

)()(!

1)(

: writecan weconverge,series theIf

)()(!

1

...)(!3

)()(

!2)(

)()()(

:about)(ofexpansionseriesTaylorThe

k

kk

k

kk

axafk

xf

axafk

SeriesTaylor

or

axaf

axaf

axafaf

axf

42

Maclaurin Series Maclaurin series is a special case of Taylor

series with the center of expansion a = 0.

∑∞

0

)(

3)3(

2)2(

'

)0(!

1)(

: writecan weconverge,series theIf

...!3

)0(!2

)0()0()0(

:)(ofexpansionseriesn MaclauriThe

k

kk xfk

xf

xf

xf

xff

xf

∑∞

0

)(

3)3(

2)2(

'

)0(!

1)(

: writecan weconverge,series theIf

...!3

)0(!2

)0()0()0(

:)(ofexpansionseriesn MaclauriThe

k

kk xfk

xf

xf

xf

xff

xf

43

Maclaurin Series – Example 1

∞.xforconvergesseriesThe

...!3!2

1!

)0(!

1

11)0()(

1)0()(

1)0(')('

1)0()(

32∞

0

0

)(

)()(

)2()2(

∑∑

xxx

kx

xfk

e

kforfexf

fexf

fexf

fexf

k

k

k

kkx

kxk

x

x

x

xexf )(ofexpansionseriesn MaclauriObtain

∞.xforconvergesseriesThe

...!3!2

1!

)0(!

1

11)0()(

1)0()(

1)0(')('

1)0()(

32∞

0

0

)(

)()(

)2()2(

∑∑

xxx

kx

xfk

e

kforfexf

fexf

fexf

fexf

k

k

k

kkx

kxk

x

x

x

44

The exponential function ex (in blue), and the sum of thefirst n+1 terms of its Taylor series at 0 (in red).

45

Taylor SeriesExample 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

1

1+x

1+x+0.5x2exp(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

1

1+x

1+x+0.5x2exp(x)

46

Maclaurin Series – Example 2

∞.xforconvergesseriesThe

....!7!5!3!

)0()sin(

1)0()cos()(

0)0()sin()(

1)0(')cos()('

0)0()sin()(

753∞

0

)(

)3()3(

)2()2(

xxxxx

kf

x

fxxf

fxxf

fxxf

fxxf

k

kk

:)sin()(ofexpansionseriesn MaclauriObtain xxf

∞.xforconvergesseriesThe

....!7!5!3!

)0()sin(

1)0()cos()(

0)0()sin()(

1)0(')cos()('

0)0()sin()(

753∞

0

)(

)3()3(

)2()2(

xxxxx

kf

x

fxxf

fxxf

fxxf

fxxf

k

kk

47

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

x

x-x3/3!

x-x3/3!+x5/5!

sin(x)

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

x

x-x3/3!

x-x3/3!+x5/5!

sin(x)

48

Maclaurin Series – Example 3

∞.forconvergesseriesThe

....!6!4!2

1)(!

)0()cos(

0)0()sin()(

1)0()cos()(

0)0(')sin()('

1)0()cos()(

642∞

0

)(

)3()3(

)2()2(

x

xxxx

kf

x

fxxf

fxxf

fxxf

fxxf

k

kk

)cos()(:ofexpansionseriesMaclaurinObtain xxf

∞.forconvergesseriesThe

....!6!4!2

1)(!

)0()cos(

0)0()sin()(

1)0()cos()(

0)0(')sin()('

1)0()cos()(

642∞

0

)(

)3()3(

)2()2(

x

xxxx

kf

x

fxxf

fxxf

fxxf

fxxf

k

kk

49

Maclaurin Series – Example 4

1||forconvergesSeries

...xxx1x1

1:ofExpansionSeriesMaclaurin

6)0(1

6)(

2)0(1

2)(

1)0('1

1)('

1)0(1

1)(

ofexpansionseriesn MaclauriObtain

32

)3(4

)3(

)2(3

)2(

2

x

fx

xf

fx

xf

fx

xf

fx

xf

x11

f(x)

1||forconvergesSeries

...xxx1x1

1:ofExpansionSeriesMaclaurin

6)0(1

6)(

2)0(1

2)(

1)0('1

1)('

1)0(1

1)(

ofexpansionseriesn MaclauriObtain

32

)3(4

)3(

)2(3

)2(

2

x

fx

xf

fx

xf

fx

xf

fx

xf

x11

f(x)

50

Example 4 - Remarks

Can we apply the series for x≥1??

How many terms are needed to get a goodapproximation???

How many terms are needed to get a goodapproximation???

These questions will be answered usingTaylor’s Theorem.

51

Taylor Series – Example 5

...)1()1()1(1:)1(ExpansionSeriesTaylor

6)1(6

)(

2)1(2

)(

1)1('1

)('

1)1(1

)(

1atofexpansionseriesTaylorObtain

32

)3(4

)3(

)2(3

)2(

2

xxxa

fx

xf

fx

xf

fx

xf

fx

xf

ax

1f(x)

...)1()1()1(1:)1(ExpansionSeriesTaylor

6)1(6

)(

2)1(2

)(

1)1('1

)('

1)1(1

)(

1atofexpansionseriesTaylorObtain

32

)3(4

)3(

)2(3

)2(

2

xxxa

fx

xf

fx

xf

fx

xf

fx

xf

ax

1f(x)

52

Taylor Series – Example 6

...)1(31

)1(21

)1(:ExpansionSeriesTaylor

2)1(1)1(,1)1(',0)1(

2)(,

1)(,

1)(',)ln()(

)1(at)ln(ofexpansionseriesTaylorObtain

32

)3()2(

3)3(

2)2(

xxx

ffff

xxf

xxf

xxfxxf

axf(x)

...)1(31

)1(21

)1(:ExpansionSeriesTaylor

2)1(1)1(,1)1(',0)1(

2)(,

1)(,

1)(',)ln()(

)1(at)ln(ofexpansionseriesTaylorObtain

32

)3()2(

3)3(

2)2(

xxx

ffff

xxf

xxf

xxfxxf

axf(x)

53

Convergence of Taylor Series

The Taylor series converges fast (few termsare needed) when x is near the point ofexpansion. If |x-a| is large then more termsare needed to get a good approximation.

The Taylor series converges fast (few termsare needed) when x is near the point ofexpansion. If |x-a| is large then more termsare needed to get a good approximation.

54

Taylor’s Theorem

.andbetweenis)()!1(

)(

:where

)(!

)()(

:bygivenis)(of value the thenandcontainingintervalanon

1)(...,2,1,ordersofsderivativepossesses)(functionaIf

1)1(

0

)(

xaandaxn

fR

Raxk

afxf

xfxa

nxf

nn

n

n

n

k

kk

(n+1) terms TruncatedTaylor Series

.andbetweenis)()!1(

)(

:where

)(!

)()(

:bygivenis)(of value the thenandcontainingintervalanon

1)(...,2,1,ordersofsderivativepossesses)(functionaIf

1)1(

0

)(

xaandaxn

fR

Raxk

afxf

xfxa

nxf

nn

n

n

n

k

kk

Remainder

55

Taylor’s Theorem

.applicablenotisTheoremTaylor

defined.notaresderivative

itsandfunction thethen,1If

.1||if0expansionofpoint thewith1

1

:for theoremsTaylor'applycanWe

x

xax

f(x)

.applicablenotisTheoremTaylor

defined.notaresderivative

itsandfunction thethen,1If

.1||if0expansionofpoint thewith1

1

:for theoremsTaylor'applycanWe

x

xax

f(x)

56

Error Term

.andbetweenallfor

)()!1(

)(

:onboundupperanderivecanwe

error,ionapproximatabout theideaangetTo

1)1(

xaofvalues

axn

fR n

n

n

.andbetweenallfor

)()!1(

)(

:onboundupperanderivecanwe

error,ionapproximatabout theideaangetTo

1)1(

xaofvalues

axn

fR n

n

n

57

Error Term - Example

?2.00at

expansionseriesTayloritsof3)( terms4firstthe

by)(replaced weiferror theislargeHow

xwhena

n

exf x

0514268.82.0)!1(

)()!1(

)(

1≥≤)()(

31

2.0

1)1(

2.0)()(

ERn

eR

axn

fR

nforefexf

nn

nn

n

nxn

58

Alternative form of Taylor’s Theorem

hxxwherehn

fR

hRhk

xfhxf

hxx

nxfLet

nn

n

n

n

k

kk

andbetweenis)!1(

)(

size)step(!

)()(

: thenandcontainingintervalanon

1)(...,2,1,ordersofsderivativehave)(

1)1(

0

)(

hxxwhereh

n

fR

hRhk

xfhxf

hxx

nxfLet

nn

n

n

n

k

kk

andbetweenis)!1(

)(

size)step(!

)()(

: thenandcontainingintervalanon

1)(...,2,1,ordersofsderivativehave)(

1)1(

0

)(

59

Taylor’s Theorem – Alternative forms

.andbetweenis

)!1()(

!)(

)(

,

.andbetweenis

)()!1(

)()(

!)(

)(

1)1(

0

)(

1)1(

0

)(

hxxwhere

hn

fh

kxf

hxf

hxxxa

xawhere

axn

fax

kaf

xf

nnn

k

kk

nnn

k

kk

.andbetweenis

)!1()(

!)(

)(

,

.andbetweenis

)()!1(

)()(

!)(

)(

1)1(

0

)(

1)1(

0

)(

hxxwhere

hn

fh

kxf

hxf

hxxxa

xawhere

axn

fax

kaf

xf

nnn

k

kk

nnn

k

kk

60

Mean Value Theorem

)()('

,,0forTheoremsTaylor'Use:Proof

)('

),(exists therethen

),(intervalopen theondefinedisderivativeitsand

],[intervalclosedaonfunctioncontinuousais)(If

abξff(a)f(b)

bhxaxnabf(a)f(b)ξf

baξba

baxf

)()('

,,0forTheoremsTaylor'Use:Proof

)('

),(exists therethen

),(intervalopen theondefinedisderivativeitsand

],[intervalclosedaonfunctioncontinuousais)(If

abξff(a)f(b)

bhxaxnabf(a)f(b)ξf

baξba

baxf

61

Alternating Series Theorem

termomittedFirst:

n terms)first theof(sumsumPartial:

convergesseriesThe

then

0lim

If

S

:seriesgalternatinheConsider t

1

1

4321

4321

n

n

nnnn

a

S

aSS

and

a

and

aaaa

aaaa

termomittedFirst:

n terms)first theof(sumsumPartial:

convergesseriesThe

then

0lim

If

S

:seriesgalternatinheConsider t

1

1

4321

4321

n

n

nnnn

a

S

aSS

and

a

and

aaaa

aaaa

62

Alternating Series – Example

!7

1

!5

1

!3

11)1(s

!5

1

!3

11)1(s

:Then

0lim

:sinceseriesgalternatinconvergentaisThis!7

1

!5

1

!3

11)1(s:usingcomputedbecansin(1)

4321

in

in

aandaaaa

in

nn

!7

1

!5

1

!3

11)1(s

!5

1

!3

11)1(s

:Then

0lim

:sinceseriesgalternatinconvergentaisThis!7

1

!5

1

!3

11)1(s:usingcomputedbecansin(1)

4321

in

in

aandaaaa

in

nn

63

Example 7

?1witheapproximatto

usedare terms1)( whenbeerror thecanlargeHow

expansion)ofcenter(the5.0at)(of

expansionseriesTaylortheObtain

12

12

xe

n

aexf

x

x

?1witheapproximatto

usedare terms1)( whenbeerror thecanlargeHow

expansion)ofcenter(the5.0at)(of

expansionseriesTaylortheObtain

12

12

xe

n

aexf

x

x

64

Example 7 – Taylor Series

...!

)5.0(2...

!2

)5.0(4)5.0(2

)5.0(!

)5.0(

2)5.0(2)(

4)5.0(4)(

2)5.0('2)('

)5.0()(

22

222

0

)(12

2)(12)(

2)2(12)2(

212

212

k

xe

xexee

xk

fe

efexf

efexf

efexf

efexf

kk

k

kk

x

kkxkk

x

x

x

5.0,)(ofexpansionseriesTaylorObtain 12 aexf x

...!

)5.0(2...

!2

)5.0(4)5.0(2

)5.0(!

)5.0(

2)5.0(2)(

4)5.0(4)(

2)5.0('2)('

)5.0()(

22

222

0

)(12

2)(12)(

2)2(12)2(

212

212

k

xe

xexee

xk

fe

efexf

efexf

efexf

efexf

kk

k

kk

x

kkxkk

x

x

x

65

Example 7 – Error Term

)!1(

max)!1(

)5.0(2

)!1(

)5.01(2

)5.0()!1(

)(

2)(

3

12

]1,5.0[

11

1121

1)1(

12)(

n

eError

en

Error

neError

xn

fError

exf

nn

nn

nn

xkk

)!1(

max)!1(

)5.0(2

)!1(

)5.01(2

)5.0()!1(

)(

2)(

3

12

]1,5.0[

11

1121

1)1(

12)(

n

eError

en

Error

neError

xn

fError

exf

nn

nn

nn

xkk

66

top related