noaa otec environmental workshop, june 2010 - crrc · otec plumes noaa otec environmental workshop,...

Post on 10-May-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

OTEC Plumes

NOAA OTEC Environmental Workshop, June 2010

OTEC Plumes

Pat Grandelli P EPat Grandelli, P.E.Greg Rocheleau

Makai Ocean Engineering, Inc.

PO Box 1206

1 1Makai Ocean Engineering, Inc.  Otec Plume

Makai Pier, Kailua, Hawaii 96734www.makai.com

Pat.Grandelli@makai.com

Next Few Minutes• Makai

– Earlier OTEC Projects

• Plume Modeling– Situation

– 80MW CW project

Situation– OTEC Hydrodynamic Model. – 100 MW – currents100 MW 2 discharge depths– 100 MW – 2 discharge depths

– Video– 10 MW Results– Mixed vs unmixed discharge– Three 100 MW plants

Makai Ocean  E i i 1973Engineering      ‐ 1973 

Mini OTEC• Subsea Pipes  & 

Subsea Software

Mini‐OTEC 1978

• Mini‐OTEC Pipe, Mooring & layout

• Four pipes at NELHAp p

• Other Studies

• ONR 2005 ‐> TodayNELHA 55” Pipe

2001• Another CW project ‐

during question time 

250 kW OTEC250 kW OTEC 

1993‐1998

l d l d f

OTEC Plume Model – Ongoing development funded by CEROS

Makai Ocean

Regional Modeling Studies of 100MW Capacity OTEC Thermal Plumes off West Oahu

Makai Ocean Engineering, Inc.

PO Box 1206PO Box 1206Makai Pier, Kailua, Hawaii 96734www.makai.com

Pat Grandelli P EPat Grandelli, P.E.Greg RocheleauPat.Grandelli@makai.com

June 2010June 2010Approved for Public Release, Distribution Unlimited

4

This effort is sponsored by the Defense Advanced Research Projects Agency and the National Defense Center of Excellence for Research in Ocean Sciences. Content of the information does not necessarily reflect the position or the policy of the Federal Government or the State of Hawaii. No official endorsement should be inferred. 4Makai Ocean Engineering, Inc.  Otec Plume

OTEC Design Overview:

What arrangement of:What arrangement of:• Temperature• Intake depth & velocity• Discharge depth &  and velocityg p y

can be operated in a sustainable manner?

S t i bilit N th l d d tiSustainability  =  No thermal resource degradation Sustainability  =  No adverse nutrient redistribution

Major Flows

One 100 MW plant:One 100 MW plant: 400 m3 /sec Warm SW

320 m3 /sec Deep SW

Lockheed Spar 1975

1000 MW: 2/3 of cubic km per day

5 5Makai Ocean Engineering, Inc.  Otec Plume

Otec Hydrodynamic Model

• Sophisticated model: Discharge plume, intake flow, geometry, density, & mixing

• Nest the OTEC model inside the dynamic OOS‐developed Hawaii Regional Ocean Model

• Use to define the plant(s) geometryUse to define the plant(s) geometry, power & spacing for sustainable & economic operation.

– Nitrate is limiting nutrient in the photic zone, high levels may cause algal blooms

8 yrs data from HOTS Station ALOHA, courtesy of Univ. Hawaii SOEST

6

high levels may cause algal blooms– Need 40:1 to 20:1 dilution of deep water to 

reach ambient levels at 100‐200m deep

6Makai Ocean Engineering, Inc.  Otec Plume

OTEC Plume Modeling TechniqueN t d ithi U i it f H ii R i l O M d l (HiROM)•Nested within University of Hawaii Regional Ocean Model (HiROM)

•EFDC domain forced with Temperature, Salinity, U,V, and Zsurface•Coupled with near-field plume model

7 7Makai Ocean Engineering, Inc.  Otec Plume

• Increases in current strength 

Effects of Current on Near‐Field Plumeg

(0‐70cm/s) cause a significant increase in the mixing and entrainment of near‐field l lti i h llplumes, resulting in shallower 

terminal depths with a greater dilution

< 10cm/s

• Warm Water Intake– 420 m3/s– ~25.7°C at 20m depth

C ld W t I t k• Cold Water Intake– 320 m3/s– ~4.1°C at 1100m depth

• Mixed Discharge– ~15°C~50 cm/s

Makai Ocean Engineering, Inc.  Otec Plume 8

– 100m Depth– Outlet velocities at 1m/s

Effects of Current on Far‐Field Plume: Shallow, narrow, and diluted vs.  deep, wide, and concentrated

• Warm Water Intake– 420 m3/s– ~25.7°C at 20m depth

• Cold Water Intake– 320 m3/s/– ~4.1°C at 1100m depth

• Mixed Discharge– ~15°C– 100m Depth– Outlet velocities at 1m/sOutlet velocities at 1m/s

~50 cm/s~50 cm/s < 10cm/s

Makai Ocean Engineering, Inc.  Otec Plume 9

North, km

East, km

North, km East, km

• Increases in current strength (0‐70cm/s) cause

Effects of Current on Near‐Field Plume• Warm Water IntakeIncreases in current strength (0 70cm/s) cause 

a significant increase in the mixing and entrainment of near‐field plumes, resulting in shallower terminal depths with a greater 

– 420 m3/s– ~25.7°C at 20m depth

• Cold Water Intake– 320 m3/s– ~4.1°C at 1100m depth

dilution4.1 C at 1100m depth

• Mixed Discharge– ~15°C– 100m Depth– Outlet velocities at 1m/s

Makai Ocean Engineering, Inc.  Otec Plume 10

Results: Nutrients from 100MW Plant ( / i d di h )100MW Plant (w/ mixed discharge)

• Warm Water Intake– 420 m3/s– ~25.7°C at 20m 

depth• Cold Water Intake

– 320 m3/s– ~4.1°C at 1100m 

depth• Mixed Discharge

– ~15°C– 70m Depth– Outlet velocities 

at 1m/s

•Plumes sink and mix, finding a neutral buoyancy at 150m, well below the mixed layer depth.

•Plumes spread out horizontally at•Plumes spread out horizontally at their equilibrium depth, remaining within a constant density layer.

Horizontal Slice at 150m Showing [Nitrate+Nitrite]

11Makai Ocean Engineering, Inc.  Otec Plume

Results: 70m vs. 100m Deep  Mixed DischargeTemperature and Nutrients vs. horizontal distance from OTEC plant

= Seaward + = Shoreward- = Seaward + = Shoreward

150m150m180m5 umol/kg

Background at ~2 umol/kg

6 umol/kgBackground at ~3.5 umol/kg

70m Mixed Discharge 100m Mixed Discharge

Discharge Depth (m)

DischargeRadius(m)

Discharge Velocity (m/s)

Entrainment (Qf/Qi)

Equilibrium Depth (m)

Final Plume [NO3+NO2] (umol/kg)

Typical [NO3+NO2] (umol/kg)

Summary of Embedded Plume Model Results

( ) ( ) ( / ) (Q /Q ) ( ) ( / g) ( / g)70 15.35 1 9.5 150 5.1 2.2105 15.35 1 8.8 186 6.2 3.7

12Makai Ocean Engineering, Inc.  Otec Plume

Movie

Makai Ocean Engineering, Inc.  Otec Plume 13

10 MW Pilot Plant: Mixed Discharge• Warm Water Intake

~25 7°C at 20m depthE ilib i D th 130 – 25.7 C at 20m depth– 44.8 m3/s

• Cold Water Intake– ~4.1°C at 1100m depth– 35.6 m3/s

Equilibrium Depth 130mTerminal Nitrate  ~2.2 mmol/kg

(ambient Nitrate) ~0‐3mmol/kgEntrainment (Qf/Qi) 16.5 35.6 m3/s

• Mixed Discharge– ~15°C at 70m depth– 1 m/s outlet velocity- = Seaward + = Shoreward

( )

[Nitrate+ Nitrite], umol/kg, after 7 days

Makai Ocean Engineering, Inc.  Otec Plume 14

•Cold Water discharge

Mixed vs. Separate Discharges

ΔT >0 2 °C•~7.5 °C at 100m, at 1 m/s•Warm Water discharge

•Started ~23.0 °C at 70m, at 1 m/s, became cooler as 7 days passed

180-200 m ~6 umol/kg

ΔT >0.2 °C 

cooler as 7 days passed.

•Unmixed warm discharge: 0.3 °C wide deviation on surface,  uneconomic 23°C at WW intake.

• Mixed discharge: No discernible effect.

Ambient surface temperature is approx. 25˚C. 

Surface Temperature, 70m Mixed Discharge, Day7

Surface Temperature, 70m WW, 100m CW Discharge, Day7 15Makai Ocean Engineering, Inc.  Otec Plume

N i ifi t i i [N] t OTEC l t h d ith ti i l

Three 100MW Plants, 2.2 km spacing, 100m Mixed Discharge

•No significant increase in [N] at OTEC plants when compared with operating a single 100MW OTEC plant with 100m discharge•Horizontal scale of plume is modified by increased number of facilities

Nitrate profiles  at each location after 7 days umol/kg

16Makai Ocean Engineering, Inc.  Otec Plume

Conclusions & Questions

• A realistic, dynamic plume model has been developed for

Questions

single and multiple offshore OTEC plants.

• The plume model is helpingThe plume model is helping us make design decisions.

• Designs for mixed discharge plumes seem moreplumes seem more sustainable (T & N) than unmixed discharge plumes.Mi d di h OTEC l t ill i t i t l l b t• Mixed discharge OTEC plants will raise nutrient levels, but remain below the photic zone and within natural variability.

• Further biogeochemical modeling would be useful.

17Makai Ocean Engineering, Inc.  Otec Plume

Thank you for attending. Questions?

2040 A Massive Energy Source ?TABLE 1: HYDROGEN PRODUCTION FROM DOMESTIC RESOURCES TO PRODUCE 40 MILLION SHORT TONS OF

HYDROGEN FUEL FOR 150 MILLION VEHICLES Resource Needed for Resource Footprint

Hydrogen Annually Required Reforming and / or Partial Oxidation Natural Gas 95 million tons 49 years 400 plants

Coal 310 million tons 89 years 280 plantsy p

Biomass 400-800 million tons n/a 400 - 600 plants

Water Electrolysis or Thermo-Chemical Wind 555 GWe n/a North e

Dakota Class 3 Wind

Solar 740 GWe n/a 3750 sq. miles

N l 216 GW n/a 200 lNuclear(electrolysis)

216 GWe n/a 200 plants

Nuclear (thermo-chemical)

300 GWth n/a 125 plants

Above information is condensed from [3].

• Similar vision as 1980 OTEC Act

OTEC 216 GWe n/a 500 - 1000 plants

1998Cornell University C L k NYCornell University – Cayuga Lake, NY

• 1.6m dia pipe, 

• Use 1.2 m3/sec 

• Saves 20MW 

• Rejects 4 hr of sunlight to Lake

• Electric power plant on same lake 

• Awards galore

• 2004 Permit • Reduces air pollution

• Regulated by water quality branchRenewal ???

• Regulated by water quality branch

top related