neutral winds in the upper atmosphere

Post on 08-Jan-2016

43 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

Neutral Winds in the Upper Atmosphere. Qian Wu National Center for Atmospheric Research. Outline. Overview of the upper atmosphere. Ozone heating. Neutral wind tides (the strongest dynamic feature). Why do we need to understand upper atmospheric winds? - PowerPoint PPT Presentation

TRANSCRIPT

Neutral Winds in the Upper Atmosphere

Qian Wu

National Center for Atmospheric Research

Outline

• Overview of the upper atmosphere.• Ozone heating.• Neutral wind tides (the strongest dynamic

feature).• Why do we need to understand upper

atmospheric winds?• How do we measure upper atmospheric winds?• Observational results.• Satellite and Balloon borne instruments.

Upper Atmosphere

Temperature Profile

Forbes, Comparative Aeronomy, 2002

Hagan et al. Global Scale Wave Model (GSWM, March)

Hagan et al. GSWM (March)

Semidiurnal Tide in Meridional Winds

Hagan et al. GSWM (June)

Hagan et al. GSWM (June)

Phase Comparison

Coriolis Force Effect on Tidal PhaseVelocity

Velocity

Coriolis force

Coriolis force

+

-

+

+

Meridional Zonal

In the Northern Hemisphere

In the Southern Hemisphere

Dynamics Equations

,

,0)(

cos

])cos([

,

,)tan

(

,cos

)tan

(

0

0

/1

QDt

D

w

a

vu

eRH

Ya

ua

uf

Dt

Dv

Xa

va

uf

Dt

Du

z

Hzz

source heating

termforcing ,

cos

directions verticaland ,meridional zonal, in velocity ,),,(

latitude) ,(longitude ),(

sin2

/2

density theis

re, temperatupotential theis 2/7)/( )/(

al,geopotenti theis

radius, earth theis

height, scale theis /

0

Q

YX

zw

a

v

a

u

tDt

D

wvu

f

T

cRppT

a

gRTH

day

ps

Tidal Wave Function

tidemigrating is )(exp}~

,~,~{

then, If

))((exp))((exp}~

,~,~{

timelocal

timeuniversal theis

r wavenumbe vertical theis

days in period wave theis 2

r wavenumbezonal theis

)(exp}~

,~,~{

2/

2/2/

2/

LzikHz

LzikHz

LzikHz

L

z

zikHz

Tieevu

s

TsieeTsieevu

tT

t

k

s

tsieevu

z

zz

z

Migrating tides Nonmigrating tides

Sun-synchronous

westward

non Sun-synchronous

westward, eastward, standing

zonal wavenumber: 1/period(days)

(diurnal tide : 1 semidiurnal: 2) zonal wavenumber: any

radiative forcing, … latent heat

PW/tidal interaction, …

comparable to / exceed the migrating tide

longitude modulation

Why do we need to know upper atmosphere neutral wind tide?

• Tides are generated in the stratosphere and strongly affected by changes in that region such as:– Gravity wave activities, – Quasi-biennial oscillation (QBO) in the equatorial

region– Sudden stratosphere warming in the high latitudes

• Long term trends in tides may be linked with changes in the stratosphere.

• Tides also have a great impact on the equatorial ionosphere through dynamo effect.

Neutral Wind Measurement

Airglow

A view from Space Shuttle

Airglow Emission RatesA

ltit

ud

e (

km)

solid=molecules, dashed=atoms

0.1 1.0 10.0 100.0 1000.0Volume emission rate (photons cm-3 s-1)

60

70

80

90

100

110

120

589.3 nm

557.7 nmO2 (0,0) lines

OH 892 nm

O 5577A

OH 8920 A

O2 (0,1) 8650A

Na 5893 A

97 km

86 km

Thermosphere Airglow Emission Rates

Alt

itud

e (

km)

0.1 1.0 10.0 100.0Volume emission rate (photons cm-3 s-1)

200

220

240

260

280

300

630.0 nmO 6300 A

Airglow Emission Sources at Night

)(12 DOOeO

eDOeO )(1

)()( 12

32 SONOAN u

O 6300 Å red line

Dissociative recombination Collisional deactivation of N2

O 5577 Å green line

Electron impact

eSOeO )(1

H O OH Ok 3 216 6 9( ' )

Electron impact

OH emission

Fabry-Perot Interferometer (FPI)

Plate

Post

Coating

Etalon

IncomingLight

OpticalAxis

Fabry-PerotInterferometer

ImagingLens

ImagePlane

Fabry-Perot Fringe Pattern

FPI Configuration

Highlights• Computerized micrometer • Daily laser calibration• High degree automation• Michigan heritage • NCAR enhancement

Major Components• Sky scanner • Filters & filter wheel• Etalon & chamber• Thermal & pressure control• Focusing lens• Detector• Computer system

Instrument Operation

FPI

OH Airglow Layer

North

West East

South

Zenith87 km

174 km

45 deg

(a) (b)

174 km

FPI at Resolute

FPI at Resolute

Instrument Electronics

FPI Operational Mode

Emission Integration

time Wind Errors Altitude

OH 8920 A 3 minutes 6 m/s 87 km

O 5577 A 3 minutes 1 m/s 97 km

O 6300 A 5 minutes 2-6 m/s 250 km

FPI Fringes8920

63005577

Laser

Mesospheric Wind Semidiurnal Tide

Lower Thermospheric Wind Semidiurnal tide

TIMED Fact Sheet

Limb-Scan Measurements

Airglow layer

The TIMED Doppler Interferometer (TIDI) is a Fabry-Perot interferometer for measuring winds in the mesosphere and lower thermosphere.

Primary measurement: Global neutral wind field, 60–120 km

Primary emission observed: O2 1 (0-0) P9

Additional emissions observed: O2 1 (0-0) P15, O2 1 (0-1) P7, O(1S) “green line”

The TIDI Instrument

Telescope Assembly

Profiler

TIDI Measurement Viewing Directions

1

2

3

4

1

2

3

4

9 minutes

Satellite Travel direction

TIDI Local Time Coverage Day 80 2002

Shifting 12 minutes per day in local time

TIDI Coldside Wind Vectors

TIDI Warmside Wind Vectors

TIDI Observations

Model Winds (GSWM)

Oberheide and Hagan

Stratosphere Balloon Borne Fabry-Perot Interferometer

• Allow daytime observation of thermospheric winds due to low solar scatter background at high altitudes.

• Inexpensive compared to satellite instrument.

Summary Upper atmospheric winds contain strong global

scale waves (e.g. tides). Tides are related to changes in the stratosphere

and can affect the ionosphere. Upper atmospheric winds are the key to a better

understanding of the ionosphere. There is a lack of observation upper

atmospheric winds on a global scale. I see a great opportunity for future balloon and

satellite missions.

top related