nanoparticles in lithium -ion batteries – opportunities ... · 17/32 electrochemistry laboratory...

Post on 28-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Electrochemistry Laboratory – Batteries

NanoparticlesNanoparticles in Lithiumin Lithium--Ion Batteries Ion Batteries ––

Opportunities and ChallengesOpportunities and Challenges

Timothy PateyTimothy Patey

R. R. BBüüchelchel, S.H. Ng, F. , S.H. Ng, F. KrumeichKrumeich, S.E. , S.E. PratsinisPratsinis, , P. P. NovNováákk

Paul Scherrer Paul Scherrer InstituteInstitute

Electrochemistry LaboratoryElectrochemistry Laboratory

Villigen, SwitzerlandVilligen, Switzerland

Electrochemistry Laboratory – Batteries2/32

OutlineOutline

• Electrochemical energy storage and the Li-ion batteries

• Nanoparticles for Li-ion Batteries

• Co-synthesis of LiMn2O4 and carbon black nanocomposites

• Outlook of research

Electrochemistry Laboratory – Batteries3/32

Electrochemical energy storage in the energy economyElectrochemical energy storage in the energy economy

1. Static load levelling of renewable energy

Shanghai, China

Electrochemistry Laboratory – Batteries4/32

Electrochemical energy storage in the energy economyElectrochemical energy storage in the energy economy

1. Static loading levelling of renewable energy

2. Transportation

Both Toyota and Mercedes will release HEVs with Li-ion batteries in 2009

Electrochemistry Laboratory – Batteries5/32

Specific Energy [Wh/kg]

Lithium-Ion

Pb/PbO2

ElectrochemicalCapacitors

1 10 100 1’0001

10

100

1’000

10’000

100’000

1’000’000

Sp

ecif

ic P

ow

er

[W/k

g]

RagoneRagone--plotplot

Electrochemistry Laboratory – Batteries6/32

ElectrochemistryElectrochemistry

� 4 V

LiCoO2,

LiNiO2,mixed

LiMn2O4

LiFePO4

Graphite

Hard Carbons

Electrochemistry Laboratory – Batteries7/32

WhyWhy notnot nanoscalenanoscale? ? �������� moremore surfacesurface areaarea = = increaseincrease in in sideside reactionsreactions

>

>

WhyWhy nanoscalenanoscale? ? �������� moremore surfacesurface areaarea = = increaseincrease in powerin power

Electrochemistry Laboratory – Batteries8/32

CoCo--synthesis of LiMnsynthesis of LiMn22OO44 and carbon blackand carbon black

Electrochemistry Laboratory – Batteries9/32

PreparationPreparation of of electrodeselectrodes

Composite

electrodeAssemble into cell

Li anode (-)

Electrolyte:

LiPF6 in EC/DMC

Separator

Composite

electrode (+)

Flame-made

powder

Carbon black

Binder

+

+

Mix contents in

polar solution[7:2:1]

1

1 - 10% polyvinylidenfluoride (PVDF) 1015 dissolved in n-methyl-2-pyrrolidon (NMP)

Electrochemistry Laboratory – Batteries10/32

Cyclic Cyclic voltammogramsvoltammograms –– reaction kineticsreaction kinetics

-600

-400

-200

0

200

400

600

3 3.2 3.4 3.6 3.8 4 4.2 4.4

Voltage, U (V)

Sp

ecif

ic C

urr

en

t, j

m (

mA

g-1

)

56 % flame-made CB

32 % flame-made CB

0 % flame-made CB

Charge

(Li+ extraction)

Discharge

(Li+ insertion)

LiMn2O4Li1-xMn2O4,

x � 0.7

Electrochemistry Laboratory – Batteries11/32

Discharge capacity per unit mass LiMnDischarge capacity per unit mass LiMn22OO44

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Cycle Number

Dis

ch

arg

e C

ap

acit

y (

Ah

kg

-1)

56 % flame-made CB

32 % flame-made CB

0 % flame-made CB

0.5C1C 2C 5C 10C 20C 50C

Electrochemistry Laboratory – Batteries12/32

Discharge capacity per unit mass electrodeDischarge capacity per unit mass electrode

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Cycle Number

Dis

ch

arg

e C

ap

acit

y (

Ah

kg

-1)

56 % flame-made CB

32 % flame-made CB

0 % flame-made CB

50C

0.5C1C 2C 5C 10C 20C

Electrochemistry Laboratory – Batteries13/32

Layout of a lithiumLayout of a lithium--ion battery ion battery –– consideration of consideration of

nanocompositenanocomposite (32wt.% carbon black) in a battery (32wt.% carbon black) in a battery

159 �m

20 �m 10 �m20 �m 20 �m

658 �m

LiMn2O4 Electrode / Al Electrolyte C6 Electrode / Cu

Electrochemistry Laboratory – Batteries14/32

Specific Energy [Wh/kg]

Lithium-Ion

Pb/PbO2

ElectrochemicalCapacitors

1 10 100 1’0001

10

100

1’000

10’000

100’000

1’000’000

Sp

ecif

ic P

ow

er

[W/k

g]

RagoneRagone--Plot Plot ––

LiMnLiMn22OO44 / CB / CB nanocompositesnanocomposites as hybrid materialas hybrid material

Electrochemistry Laboratory – Batteries15/32

ConclusionsConclusions

• Battery with LiMn2O4 / carbon black nanocompositescould have a specific energy one order of magnitude greater than supercapacitators, but…

• Coating of nanoparticles required to reduce capacity fading over the lifetime of the battery (>1000 cycles).

Electrochemistry Laboratory – Batteries16/32

Other activities Other activities –– past and presentpast and present

• Synthesis of LiV3O8 cathode material by FSP.

• Electrode optimization of TiO2 using surfactants.

• Optimization of LiMn2O4 nanoparticles by FSP.

Electrochemistry Laboratory – Batteries17/32

Other activities Other activities –– past and presentpast and present

• Synthesis of LiV3O8 cathode material by FSP.

• Electrode optimization of TiO2 using surfactants.

• Optimization of LiMn2O4 nanoparticles by FSP.

Other activities Other activities -- futurefuture

• Advanced electrochemical characterization at the Tokyo Institute of Technology, Prof. M. Nakayama

• Electrochemical impedance spectroscopy

• Electrochemical calorimetric measurements

Electrochemistry Laboratory – Batteries18/32

AcknowledgmentsAcknowledgments

THANK YOU FOR YOUR ATTENTION!

top related