modeling of concrete materials and …bechtel.colorado.edu/~willam/cclass7-07.pdf · triaxial...

Post on 30-Jan-2018

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MODELING OF CONCRETE MATERIALS AND STRUCTURES

Kaspar Willam, University of Colorado at BoulderWith contributions by Dr. Inkyu Rhee, Dr. Jaesung Lee and Keun Lee, UC-Boulder

Class Meeting #7: Discrete Interface Formulations

Zero-Thickness Interface Models:Cohesive Damage and Elasto-Plastic Traction-Separation Models

Inherent Length Scale:Fracture Energy Basis GI

f and GIIf of Softening

Example Problems:- Thermal Softening of Axial Strength due Mismatch- High Temperature Bond: Pull-Out Experiment vs FE Model

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

MULTI-SCALE ASPECTS OF CONCRETE MATERIALS

Four Scales of Observation, Continuum vs Particle Models-Size Effects?

(Real Structure)Meter Level

Millimeter Level(Concrete)

Micrometer Level(Cement Paste)

Nanometer Level(Calcium Silicate Hydr

X1000

X1000

X1000

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE EFFECTS IN CONCRETE MATERIALS

Concrete Spalling: Temperature gradient vs pore pressure effects.

Transient Effects: Load-induced thermal strains-LITS.

Andersen and Thelandersen [1984]: Thermal sweep experiments.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Temperature, C

/ f'c

TEST 1 C / min

TEST 5 C / min

−σ

11

-10

-5

0

5

10

0 200 400 600 800 1000

Temperature, C

Str

ain

[%

]

σ a

= -0.675 f'c σ a

= -0.45 f'c

σ a

= -0.225 f'c

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

THERMAL MISMATCH OF CONCRETE MATERIALS

Heterogeneity of Mesostructure:

Aggregate vs Cement Paste and Bond of ITZ

x

y

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

ZERO-THICKNESS INTERFACE FORMULATION

Weak ITZ-Cohesive Traction-Separation Relations:Softening Damage and Plasticity Models

Fracture Energy Basis:Coupling of Mode I and Mode II Softening Damage/Plasticity Models(softening of tensile bond vs tangential shear strength).

x

y[|un

|]1

n

s

[|u s|]1

ξ[|u n|]2

[|u s|]2

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

BIMATERIAL INTERFACE CONDITIONS

Perfect Bond:

[|uN |] = uaN − uc

N = 0 and [|tN |] = taN − tc

N = 0

Weak Discontinuities: all strain components exhibit jumps across interfaceexcept for εa

TT = εcTT restraint.

Note: Jump of tangential normal stress, σaTT 6= σc

TT .

Imperfect Contact:

[|uN |] = uaN − uc

N 6= 0 whereas [|tN |] = taN − tc

N = 0

Strong Discontinuities: all displacement components exhibit jumps acrossinterface.

Note: FE Displacement method enforces traction continuity in ‘weak’ senseonly, hence [|tN |] 6= 0.

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

ZERO-THICKNESS INTERFACE FORMULATION

Deformed FE Mesh after Thermal Sweep:

Diagonal separation of RVE due to slip.

x

y

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

ZERO-THICKNESS INTERFACE FORMULATION

Axial Thermal Stress due to Temperature Sweep:

Experimental observations vs computational results.

0 200 400 600 800Temperature [

oC]

0

0.2

0.4

0.6

0.8

1

- σ11

/ f’

c

TEST 1oC/min

TEST 5oC/min

T

ε 11 = 0

0 200 400 600 800Temperature [C]

-40

-30

-20

-10

0

Stre

ss_Y

Y[M

pa]

at O

uter

Edg

e of

Con

fine

d Su

rfac

es

ContinuumDiscrete, b=0.1Discrete, b=0.5Discrete, b=1.0

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE BOND

Pull-Out Test Setup: Residual Experiments after Cooling.

Test Variables:

- Coated-Uncoated Rebars- Slow-Rapid Heating Rates- Target Temperatures: 20oC, 200oC, 400oC, 600oC- Natural-Water Cooling

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE BOND

Pull-Out Test Program: Residual Experiments after Cooling.

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE BOND

Pull-Out Test Results:

Bond-Slip Relationships for T=20, 200, 400, 600C (rapid heating)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.01 0.02 0.03 0.04 0.05 0.06Slip (inch)

Bon

d st

reng

th (k

si)

Uncoated ref.UR15_200NUR15_400NUR15_600N

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE BOND

Pull-Out Test Results:

Bond Strength of slow heating tests up to T = 20o, 200o, 400o, 600oC

1.29

1.11

0.36

0.00

0.99

1.44

0.29

0.60

1.67

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

25 200 400 600 800

Temperature (˚C)

Bon

d st

reng

th (k

si)

UR2 test series (Natural cooling)CR2 test series (Natural cooling)

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

HIGH TEMPERATURE BOND

Pull-Out Test Results:

Bond Strength of rapid heating tests up to T = 20o, 200o, 400o, 600oC

0.94

0.00

0.99

0.35

1.29

1.27

0.160.33

1.44

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

25 200 400 600 800

Temperature (˚C)

Bon

d st

reng

th (k

si)

UR15 test series (Natural cooling)CR15 test series (Natural cooling)

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Finite Element Model of Pull-Out Test Specimen

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

BIMATERIAL INTERFACE CONDITIONS

Perfect Bond:

[|uN |] = ustN − uco

N = 0 and [|tN |] = tstN − tco

N = 0

Weak Discontinuities: all strain components exhibit jumps across interfaceexcept for εst

TT = εcoTT restraint.

Note: Jump of tangential normal stress, σstTT 6= σco

TT .

Imperfect Bond:

[|uN |] = ustN − uco

N 6= 0 whereas [|tN |] = tstN − tco

N = 0

Strong Discontinuities: all displacement components exhibit jumps acrossinterface.

Note: FE Displacement method enforces traction continuity in ‘weak’ senseonly, hence [|tN |] 6= 0.

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

MISMATCH OF THERMAL EXPANSION

3-D Thermoelastic Response:

∆εεεco = EEE−1co : ∆σσσco + αααco∆T and ∆εεεst = EEE−1

st : ∆σσσst + αααst∆T

Interface Bond Kinematics: ∆εstz = ∆εco

z

Interface Bond Traction: ∆σstr = ∆σco

r

Radial Contact Stress:

σr =EcoEst

Estνcon − Ecoνst[αco − αst]∆T + HO

0 100 200 300 400 500Temperature

0.00001

0.0000125

0.000015

0.0000175

0.00002

0.0000225

alpha

0 100 200 300 400 500Temperature

0

50

100

150

200

250

Radial stress@MPaD

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

TRIAXIAL CONCRETE MODEL

Damage-Plasticity Model in ABAQUS: Lee & Fenves [1998]

Damage-Plasticity Model in ABAQUS Standard

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PLANE STRESS FAILURE ENVELOPE

Damage-Plasticity Model: Lee & Fenves [1998]

Triaxial Concrete Model in ABAQUS-Standard

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Evolution of Tensile Damage at Different Outside TemperaturesT = 100, 300, 580oC

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Evolution of Compression Damage at Different Outside TemperaturesT = 100, 300, 580oC

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Circumferential Stress Distribution at Outside TemperaturesT = 100, 300, 580oC

-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60

Radius [mm]

Stre

ss [M

Pa]

stress_t at T=108

stress_t at T=300

stress_t at T=580

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Circumferential Stress Contours at Outside Temperature T = 580oC

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Bond Stress-Axial Slip Response (cold vs hot conditions)

0

5

10

15

20

25

0 1 2 3 4 5

Bond stress

τ b in MPa

Displacement in mm

cold

warm

cooled

cold exp. Kurz

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Axial Stress Contours after Heating to T = 580oC

S, S22

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

PULL-OUT PROBLEM

Compression Damage after Heating to T = 580oC

DAMAGEC

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

CONCLUDING REMARKS

Thermal Mismatch of Steel and Concrete:Full Bond vs Cohesive Interface Formulation - Loss of Confinement.

Mesoscale Analysis of Concrete RVE:Interaction of tensile cracking and shear debonding along weakzero-thickness interface layers-ITZ.

High Temperature Pull-Out:Residual experiments and axisymmetric FE simulation ofsteel-concrete contact separation.

Class #7 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007

top related