math 10: foundations and pre-calculus e. what is a mathematical reation?

Post on 15-Jan-2016

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Math 10: Foundations and Pre-Calculus

E. What is a Mathematical Reation?

FP10.6 Expand and apply understanding of relations and

functions including:relating data, graphs, and situationsanalyzing and interpretingdistinguishing between relations and functions.FP10.8 Demonstrate understanding of linear relations

including:representing in words, ordered pairs, tables of

values, graphs, function notation, and equationsdetermining characteristics including intercepts,

slope, domain, and rangerelating different equation forms to each other

and to graphs.

Key Terms:Find the definition

of the following terms:

RelationArrow DiagramFunctionDomainRangeFunction Notation

Rate of ChangeLinear FunctionVertical (y)

interceptHorizontal (x)

intercept

1. Ways of Representing Relations FP10.6 Expand and apply understanding of relations and

functions including: relating data, graphs, and situationsanalyzing and interpretingFP10.8 Demonstrate understanding of linear relations

including: representing in words, ordered pairs, tables of

values, graphs, function notation, and equations

A set if a collection of distinct objects (in our case numbers)

A element of a set is one object in the set

A relation associates the elements of one set with the elements of another set

One way to write a set is to list its elements in braces.

For example we can write the set of real numbers from 1 to 5 as:

{1,2,3,4,5}

The order of the elements in the set does not matter

Consider the set of fruits and the set of colors

We can associate fruits with their colors

So the set of ordered pairs is a relation:

Here are some other ways to represent this relation:

The heading of each column describes each set.

Two ovals represent the setsEach arrow associates an element in the 1st

set to the 2nd set

The order of the words in the ordered pairs and which column and which oval the words are in in the table and arrow diagram are important

It makes sense to say “an apple may be the color red” but does not make sense to say “red may be the color apple”.

That is, a relation has direction from one set to the other set

Example

Example

Example

PracticeEx. 5.1 (p. 261) #1-11

# 3-13

2. Properties of FunctionsFP10.6 Expand and apply understanding of relations

and functions including:distinguishing between relations and functions.FP10.8 Demonstrate understanding of linear relations

including:representing in words, ordered pairs, tables of

values, graphs, function notation, and equationsdetermining characteristics including intercepts,

slope, domain, and range

The set of first elements of a relation is called the domain

The set of related second elements of a relation is called the Range

A function is a special type of relation when each element in the domain is associated with exactly one element in the range.

Example

In the workplace, a persons gross pay, P dollars, often depends on the number of hours worked, h.

So, we say P is the dependent variable.

Since the number of hours worked, h, does not depend on the gross pay, P, we say it’s the independent variable

Example

We can think of a function as an input/output machine

The input can be any number in the domain, and the output depends on the input number

So the input is the independent variable, and the output is the dependent variable

Consider a machine that calculates the value of quarters. This machine represents a function.

When the input is “q” quarters, the output or value, V, in dollars is: 0.25q

The equation V=0.25q describes this function

Since V is a function of q, we can write this using function notation

V(q)=0.25q

We say: “V of q is equal to 0.25q”

This notation shows that V is the dependent variable and the V depends on q.

ExampleWhat does V(3) mean?

Any function that can be written as an equation in two variables can be written in function notation.

Example Write the equation d = 4t+5 in function

notation.

t is the domaind(t) is the range

When we write an equation that is not related to a context, we use “x” as the independent variable and “y ” as the dependent

Then an equation in two variables such as

y = 3x-2 may be written as …..

Conversely we may write an equation in function notation as an equation in 2 variables

For example, for the equation C(n) = 300+5n, we write ….

And for the equation g(x) = -2x+5, we write…..

Example

PracticeEx. 5.2 (p. 270) #1-19

# 4-23

3. Interpret and Sketch GraphsFP10.6 Expand and apply understanding of

relations and functions including:relating data, graphs, and situationsanalyzing and interpreting

Construct Understanding p. 277

The properties of a graph can provide info about a given situation:

Example

Lets use the following graph to describe what is happening:

Example

Example

PracticeEx. 5.3 (p. 281) #1-15

# 3-18

4. Graphing DataFP10.6 Expand and apply understanding of

relations and functions including:relating data, graphs, and situationsFP10.8 Demonstrate understanding of linear

relations including:representing in words, ordered pairs, tables

of values, graphs, function notation, and equations

Construct Understanding p. 285

PracticeEx. 5.4 (p. 286) #1-2

5. Graphing Relations and Functions

FP10.6 Expand and apply understanding of relations and

functions including:relating data, graphs, and situationsanalyzing and interpretingdistinguishing between relations and functions.FP10.8 Demonstrate understanding of linear relations

including:representing in words, ordered pairs, tables of values,

graphs, function notation, and equationsdetermining characteristics including domain, and

range

Construct Understanding p. 288

We can represent the function that associates every whole number with its double in several ways

We know the relation y=2x is a function because each value of x associates with exactly one y-value, each ordered pair has a different 1st element.

The domain of a function is a set of values of the independent variable; for the previous graph, the domain is all the x-values.

The range of a function is a set of values of the dependent variable; for the previous graph, the range is all the y-values.

When the domain is restricted to a set of discrete values, the points are not connected.

Example

Example

Example

Example

PracticeEx. 5.5 (p. 293) #1-20

# 4-23

6. Properties of Linear FunctionsFP10.8 Demonstrate understanding of linear

relations including:representing in words, ordered pairs, tables

of values, graphs, function notation, and equations

determining characteristics including intercepts, slope, domain, and range

relating different equation forms to each other and to graphs.

The cost for a car rental is $60, plus $20 for every 100km driven.

The independent variable is the distance driven and the dependent variable is the cost.

We can identify that this is a linear relation in different ways

A Table of Values:

For a linear relation, the constant change in the independent variable results in the constant change in the dependent variable.

A set of ordered Pairs:

A Graph:

We can use each representation above to calculate the Rate of Change

The rate of change can be expressed as a fraction.

Change in dependent variable = $20 .

Change is independent variable 100 km

The rate of change is $0.20/km; that is, for each additional 1 km driven, the rental cost increases by $0.20.

The rate of change is constant for a linear relation.

We can determine the rate of change from the equation that represents the linear function.

Let the cost be “C” dollars and the distance traveled be “d” km.

The equation is:………

Example

When an equation is written using the variables x and y, x represents the independent variables and y represents the dependent variables.

Example

Example

Example

PracticeEx. 5.6 (p. 307) #1-20

# 6-22

7. Graphs of Linear FunctionsFP10.8 Demonstrate understanding of linear

relations including:representing in words, ordered pairs, tables

of values, graphs, function notation, and equations

determining characteristics including intercepts, slope, domain, and range

relating different equation forms to each other and to graphs.

Each graph below shows the temp, T, in degrees C°, as a function of time, t hours, for two locations.

Location A:

The point where the graph intersects the horizontal (x) axis has the coordinates (4,0)

The horizontal (x) intercept is 4. This represents the time after 4h, when the temp is 0°C.

The point the graph intersects the vertical (y) axis is (0,-5).

The vertical (y) intercept is -5. This point of intersection represents the initial temp, -5°C.

Domain = …..Range = …..

Rate of Change = ….

Location B:

The point where the graph intersects the horizontal (x) axis has the coordinates (5,0)

The horizontal (x) intercept is 5. This represents the time after 5h, when the temp is 0°C.

The point the graph intersects the vertical (y) axis is (0,10).

The vertical (y) intercept is 10. This point of intersection represents the initial temp, 10°C.

Domain = …..Range = …..

Rate of Change = ….

The rate of change is negative because the temp decreases over time (falls left to right)

The rate of change is positive when the temp increases over time (rises left to right)

Example

We can use the intercepts to graph a linear function written in function notation.

To determine the y-intercept (vertical) evaluate f(x) when x=0, that is evaluate f(0) (sub in 0 for x solve for y)

To determine the x-intercept (horizontal) determine the value of x when f(x)=0. (sub in 0 for y and solve for x)

Example

Example

Example

PracticeEx. 5.7 (p. 319) #1-16

# 6-20

top related