magnetism and spin-orbit interaction: some basics and examples

Post on 09-Feb-2022

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dieter Weiss

Experimentelle und Angewandte Physik

Magnetism and Spin-Orbit Interaction:

Some basics and examples

Magnetization pattern of ferromagnet determines stray field

ferromagnet (Ni)

2DEG

a

Transport in a two-dimensional electron gas with superimposed periodic magnetic field (le >> a)

(Our initial) Motivation

B (T)

ρρ ρρ xx

( ΩΩ ΩΩ)

( )= ± 1C 4

Commensurability (Weiss) Oscillations :

2R n a SdH oscillations

Transport in a periodic magnetic field

see, e.g., P.D. Ye PRL 74, 3013 (1995)

A little bit of historyHans Christian Ørsted

Albert Einstein

SciencephotoLIBRARY

1820: Electric current generates magnetic field

1905: On the electrodynamics of moving bodiesMagnetic field stems from Lorentz contraction of moving charges

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

Magnetic moment and angular momentum

I

S

Current in a loop generates magnetic moment µµµµ, constitutes magnetic dipole

area SI=μ S

As mass is transported around the loop ⇒ µµµµ is connected to angular momentum

2 [Am ] gyromagnetic ratio= γ γ =μ L

Size of atomic magnetic moment

− −= = ⇒ µ = − = − = − − µπ

µ= − µ = =

B

BB

e ev 1 1 e LI evr L

T 2 r 2 2me

with Bohr Magneton2m

μ L-e-

v

µµµµ

L

Magnetization M: magnetic moments / volume [A/m]

http://www.orbitals.com

/orb/ov.htmAngular momentum: quantum mechanical picture

Total angular momentum of an atomis composed of angular momentumof all occupied electron states L and of all corresponding spins S

Total angular momentum (L-S coupling):

= +J L S

µ= −ℏ

Bgμ J

Connection between µµµµ and J

with Landé factor

( ) ( ) ( )( )

+ + + − += +

+J J 1 S S 1 L L 1

g 12J J 1

Susceptibility

Connection between field H (e.g. generated by coil) and magnetization M:

= χM Hχ <

χ >diamagnetic if 0paramagnetic if 0

( )0Connection between B and H field : (for M H)= µ + <<B H M

( )0 0 (1 ) ⇒ = µ + χ = µ + χB H H H

Not the whole story!

( )= µ + +0 dB H H M

demagnetizing field or stray field(important for ferromagnets)

H Linear materials:

magnetic susceptibility

permeability of free space

+

+

+

M

Hd [ ]∇ ⋅ = ∇ ⋅ µ + =d0 ( ) 0HB M

=∇ ⋅ −∇ ⋅dH M

Any divergence of M creates a magnetic field – can be seen assort of (bound) magnetic charges

Demagnetizing field

Easy expression for strayfield (demagnetizing field) Hd only for ellipsoids:

= −

+ + =

xx

yy

zz

xx yy zz

d

N 0 0

0 N 0

0 0 N

with N N N 1

MH

Some examples:

= = = 1xx yy zz 2N 0, N N = = = 1

xx yy zz 3N N N

= = =xx yy zzN N 0, N 1

x

y

z

M

( )− ⇒

==µ + + = µ0 0

d

d

M

B H M

H

H H

H

long cylindrical rod

sphere

flat plate

Paramagnetism (of isolated magnetic moments)Requisite: Atoms with non-vanishing angular momentum J

Energy of magnetic moment E = − ⋅μ B

Classically: arbitrary values and orientation of µµµµ

0 p€€€€€2

p 3 p€€€€€€€€€€2

2 p

f

- 1

- 0.5

0

0.5

1

UmB

02

π2π3

2

ππ

1

0

-1

U/µ

B

φ

Bz z J B

gJ m g

µµ = − = − µℏ

z JJ m= ℏ

ℏ32

ℏ12

ℏ52

− ℏ12

− ℏ32

− ℏ52

J: discrete values and orientations of , e.g. J 5 / 2=Quantum mechanically μ

Jm J,J 1,... (J 1), J= − − − −

2J+1 discrete values(and hence energy levels)

Jm J BAssociated energy levels E m g B get thermally occupied

= µ

z−µ

Magnetization (thermal average)

Magnetization ( )B JM NgJ J: total angular mome uB x nt m= µ

Brillouin function ( ) BJ

B

2J 1 2J 1 1 x gJ BB x coth x coth ; with x

2J 2J 2J 2J k T

+ + µ = − =

J

B S

Saturation:

for x 1: B 1

and M NgJ M

N :Density of magnetic atoms

>> →→ µ =

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Bx gJ B / kT= µ

B J(x) 1 3

J ,1, ,2...2 2

= ∞

( )

( )

<< ⇒ ≈ + −+

⇒ ≈

+ µ + µ + µ µ= µ ≈ = µ ⇒ χ = ≈

J

2 2 2 2 2 2B B B 0

B J 0B B B

"High T":1 x

x 1 coth x ...x 3

J 1xB

J 3g J(J 1) g J(J 1) g J(J 1)M 1

M NgJ B x N B N H N3k T 3k T H 3k T

Paramagnetism (of free electrons)

D(E)

E

EF

2gµBB

( ) B BMagnetization: M N N N↑ ↓= − µ = ∆ µ

( )F B BF

1 3 NN D E 2g B g B

2 2 E∆ = ⋅ µ = µ

( )FF

3 ND E in 3D

2 E=

Resulting magnetization:

2 2B B 0

F B F

3 N 3 NM g B g H

2 E 2 k T= µ = µ µ

χ1

dia para3Taking into account diamagnetism of free electrons (M M )= −

2B 0

B F

Ng

k Tχ = µ µ Independent of temperature!

Exchange Interaction (a la Heisenberg)

Exchange due to Pauli exclusion principle and Coulomb repulsion

An electron pushes a second electron with the samespin orientation out of a region with diameter λ →exchange hole forms

Exchange holeConsequences of spin arrangement for total energy

↑↑

↑↓

For parallel orientation, e.g., potential energy gets reduced compared

to anti-parallel arrangement, e.g., since Coulomb-repulsion is reduced

due to larger average interparticle distance.

On the ↑↑ other hand kinetic energy is larger for since Fermi-energy increases due to fixed electron number.

delicate interplay!

λ

Increase of kinetic energy (example)

Fermi energy EF of a free electron gas increases if, for fixedelectron density only one spin species is permitted

D (E)↓↑D (E) D (E)↑ D (E)↓

δE

FE

FE

EE

1R 2R

1r

2r

( )2

2 21 2 1 2

ˆ V( , ) E2m

ψ = − ∇ + ∇ ψ + ψ = ψH r rℏ

Exchange Interaction (a la Heisenberg)

Two electron wave function of hydrogenmolecule like system:

Fermi-Dirac statistics requires that

ψ = −ψ1 2 2 1( , ) ( , ) exchange of electronsr r r r

Construction of Ψ with Heitler-London approximation:

[ ]s 1 2 1 1 2 1 1 S2 2 2( , ) ( ) ( ) ( ) ( )ψ = ϕ ϕ χ+ ϕ ϕr r r r r r

Spin of both electrons parallel (Triplett, S=1)

Spin of both electrons anti-parallel (Singulett, S=0)

symmetric anti-symmetric under particle exchange

[ ]T 1 2 1 1 2 1 1 T2 2 2( , ) ( ) ( ) ( ) ( )ψ = ϕ ϕ χ− ϕ ϕr r r r r r

anti-symmetric symmetric under particle exchange

χ

↑↑

↑↓ + ↓↑

↓↓

↑↓ − ↓↑

1

0

-1

0

1

1

1

0

S ms

Triplett

Singulett

χT symmetric

χS anti-symmetric

1 2⋅S S

1

4

1

4

1

4

3

4−

Spin wave function χχχχ

see, e.g. Stephen Blundell Magnetism in Condensed

Matter Oxford University Press

1R 2R

1r

2r

1 2 1 2

S S T TS T

T TS S

2 2 2 2

1 2 1 1 2 2 1 1 2 21 21 2 1 1 2 2

S T S T( , ) and ( , ) have different energy E and E

ˆ ˆH HE E .........

e e e e2 d d ( ) ( ) ( ) ( )

ψ ψ

ψ ψ ψ ψ− = −

ψ ψψ ψ = ϕ ϕ + − − ϕ ϕ −− − −

r r r r

r r r r r rR Rr r r R r R

exchange integral J

Exchange splitting

sign of J determines spin ground state

exclusively due to the exchange of the two electrons

Ashcroft, Mermin

S energy ms

1

0

10-1

J

J/4

-3J/4

B

0

S T

S T

J 0 E E spins parallelJ 0 E E spins anti-parallel

> ⇒ > ⇒

< ⇒ < ⇒

Heisenberg Hamiltonian

Expressing spin Hamiltonian with Eigenvalues ES and ET in termsof S1 and S2:

1S T S T 1 24

ˆ ˆˆ (E 3E ) (E E )= + − − ⋅H S S 1 2ˆ ˆ⋅ =S S

14

34

S 1

S 0

+ =

− =

T

S

ˆ has Eigenvalue E for triplett ( or ) and

E for singulett ( or )

↑↑ ↓↓

↑↓ ↓↑

H

Shift of origin results in usual form of Heisenberg Hamiltonian

S T 1 2 1 2ˆ ˆ ˆ ˆˆ (E E ) J= − − ⋅ = − ⋅H S S S S

Generalisation for many spins: i ji,j

ijˆ ˆˆ J= − ⋅∑H S S

Exchange integral between spin i and spin j

2ˆusing that S(S 1)= +S

Forms of exchange interaction

Direct exchange interaction

from direct overlap

Superexchange

mediated by paramagnetic atomsor ions

RKKY Interaction(After M.A. Rudermann, C. Kittel, T. Kasuya, K. Yosida)

coupling mediated by mobile charge carriers

Example: p-d exchage interaction in a 2DHG

Mn (S=5/2) in two-dimensional hole gas

Nature Physics

6, 9

55 (201

0)

Wurstbauer et al.

see: WP-20 Anomalous Hall effect in Mn doped,p-type InAs quantum wellsC. Wensauer, D. Vogel et al.

Weiss molecular field Pierre Weiss 1907

j j B j j j BS replaced by constant moment: g / / g= − µ ⇒ = − µμ S S μ

ℏ ℏ

i i

magnetic moment of spin μ S

j

i

Sum of all act on

one particular spin

S

S

= λM

MWeiss molecular field B

Magnetic moments get aligned in an effective field Beff = B0+BM >>B0

B i iex i ij j i i

Bj

2i

ex ij j i i ij i M2B j jB

gE 2 J ,

g

2E 2 J J

g (g )

− µ= − ⋅ = ⇒ = −

µ

= ⋅ = − ⋅ = − ⋅ µ µ

∑ ∑

S μS S μ S

μS μ μ μ B

ℏ ℏ

Idea: Replace interaction of a given spin with all other spins by interaction withan effective field (molecular field)

Ferromagnetism within the molecular field picture

Molecular field Bm=λM allows to map ferromagnetism onto paramagnetism

J BJ B

g J (B )2J 1 2J 1 1 xM Ng J coth x coth with x

2J 2J 2J 2J kTMµ+ + = µ − =

+ λ

M on both sides of equation:graphical or numerical solution

BC

B

SJg (J 1)T

3k

Mµ + λ=

3C

M S

Für T ~ 10 K und

B M ~1500

J 1

T

/ 2== λ

Heisenberg Model unable to describe all aspects of ferromagnetism e.g. momentof iron is 2.2 µB. Stoner picture:

Band magnetism and Stoner criterion

2kin F

1E D(E ) E

2∆ = δ

Redistribution of spins: Energy cost EkinE

EF EδResulting magnetization

( ) B F BM n n D(E ) E↑ ↓= − µ = µ δ

Energy of electron‘s magnetization dM ineffective (Weiss) field Beff of other electrons

M 22 2

eff p2Bot F

0

M 1dEpot dM B E dM M D(E ) E

2 2λ′ ′= − ⋅ → ∆ = − λ = −λ = µ− δ∫

2kin pot F

2B F

1Energy gain if E E D(E ) E [1- D(E )] 0

2∆ + ∆ λµ= δ <

2FBFerromagnetism occurs if D(E ) 1 (holds for Fe,Ni,C o)⋅ ≥λµ Stoner criterion

D (E)↓D (E)↑

Ferromagnet: Density of States D(E)

majority spins

minority spins

s-electrons

d-electrons

majority spins

minority spins

Schematic Nickel

Magnetic Domains

Formation of domains reduces stray field energy!

2d d 0 d 0 d

space sample

1 1Energy of stray field : E dV dV

2 2= µ = − µ ⋅∫ ∫H H H M

Width of a Bloch wall

Energy to rotate spin by angle θ

= − ⋅ = − θ2ex 1 2E 2J 2JS cosS S

θ = → = − 2ex0 E 2JS

Classical Heisenberg Hamiltonian

θ ≠ → ∆ = θ θ <<2 2ex0 E JS for 1

π ππ ⇒ θ = ⇒ ∆ =2

2exSpin rotation by over N sites energy cos t per line : E JS

N N

22ex

ex 2 2

EEnergy per unit area JS

a Na

∆ πε = =

a: lattice constant ⇒ → ∞best N ?

Magnetocrystalline anisotropy

Ferromagnetic crystals have easy and hard axes. Along some crystallographicdirections it is easy to magnetize the crysal, along others harder. Reflects thecrystal symmetry.

uniaxial anisotropy (e.g. Co) cubic anisotropy (e.g. Fe)

= θ + θ +2 41 2E K sin ( ) K sin ( ) ... ( )= θ ϕ + θ θ +2 2 2 21

1 4E K sin ( )sin (2 ) cos ( ) sin ( ) ....

ϕ

Extra energy associated with magnetocrystalline anisotrpy:

see: WP-22, C. Butschkow et al.

Example: GaMnAs core-shell nanowires

system with very strong uniaxialanisotropy

Width of a Bloch wall, continued

assume simple form of anisotropy energy

2aniE Ksin ( ); K 0= θ >

energy cost of rotation out of easy direction

N2 2

ii 1 0

N NKKsin Ksin d

2

π

=θ ≈ θ θ =

π∑ ∫

NKaenergy per unit area=

2

a

22

BW 2NKa

exchange energy anisotropy energy JS2 Na

π+ ε = +

BW 32J

From d / dN 0 N S NaK

2J

aS

Kaε = ⇒ = ππ ⇒ =

domain wall width

Reversal of magnetization: Hysteresis

-HC HS

MSMr

M

H

macroscopic bulk material consisting of many domains

Processes

1. Shift of domain walls (reversible and irreversible)2. Domain rotation towards nearest easy axis3. Coherent rotation at high fields

Magnetization of a cube with uni-axial anisotrpy

W. Rave, K. Fabian, A. Hubert, JMMM 190, 332 (1998)

u dnormalized anisotropy constant K / K

two-domain-statevortex-state

single-domain-state

multi-domain-state

micromagnetic simulation

anisotropy

samplesize

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

Measurement of domains: magnetic force microscopy

MFM measures „magnetic charges“

1. topography scan 2. MFM scan (lift mode)

lift height

cantilever withmagnetic tip

magnetization M div M sim. MFM picture real MFM picture

Domains, measured by MFM

4Å Fe / 4Å Gd (75 layers) 50 Mbyte hard drive

Perpendicular magnetization in-plane magnetization

4 ground state configurations

in-plane and out-of plane mag-netization component can beswitched independently!

Between multidomain and single-domain state: vortex structure

Picture: Ref 3)

1) J. Raabe, R. Pulwey et al., J. Appl. Phys. 88, 4437 (2000)2) T. Shinjo et al., Science 289, 930 (2000)3) A. Wachowiak et al., Science 298, 577 (2002)

Detection of in-plane vortex

Lorentz-microscopy probes in-plane magnetization…

300 nm

J. Raabe, R. Pulwey et al., J. Appl. Phys. 88, 4437 (2000)

Detection of vortex singularity

J. Raabe, R. Pulwey et al., J. Appl. Phys. 88, 4437 (2000)

Another technique: Micro Hall magnetometry

allows to measure hysteresis traces

Hs

IU B

en=

M

M

Measures directly the stray field, averaged over the central area of the Hall junction

Hysteresis trace of a vortex state

M. Rahm et al., J. Appl. Phys. 93, 7429 (2003)

1.8 mm

Vortex-Golf

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

Origin of spin-orbit (SO) interaction

SO B 2ˆ ˆH

2mc

× = −µ ⋅

E pσ Zeeman B

ˆ ˆH = −µ ⋅σ B

eff 22mc

×= E pBvector of Pauli

spin matrices

= −µB effE BSpin-orbit interation due to orbital motion

magnetic moment of electron

+

+-

-nucleus

electron

electron‘s restframe

Beff

Bulk inversion asymmetry (BIA)Lack of inversion symmetry in III-V semiconductors"Dresselhaus contribution γ"

Structure inversion asymmetry (SIA)due to macroscopic confining potential: "Rashba contribution α". Tunable by external electric field!

ψ 2(z)

V(z)

∝ γ −

xBIA

y

kB

k

ySIA

x

kB

k

∝ α

kx

BBIA

ky

BSIA

kx

ky

Electric field E in solids

2 2

SOkˆ ˆ with

2m= +H Hℏ

SO x y y x x x y yˆ ( k k ) ( k k )= α − + γ −H σ σ σ σ

SO interaction in 2DEG: Rashba & Dresselhaus terms

Pauli spin matrix

Rashba Dresselhaus

tunable by gate voltage

Calculation of Eigenvalue

− = = = −

= α −

RashbaSO x y y x

x y z0 1 0 i 1 0

ˆ ˆ ˆ; ; 1 0 i 0 0

ˆ ( k k )

1σ σ σ

H σ σ

α α +− α = − = α α −α

= − =

α

y y xx

y

RashbaSO x y y x

y xx

0 k 0 (k ik )0 i k

k 0 (k ik ) 0

ˆ ( k k

i k 0

)H σ σ

2 2x yEigenvalues of the matrix : k k k±α + = ±α

Pauli Spin matrices

Description of zero-field spin splitting by Beff

= α σ − σ + γ σ − σ σ ⋅

SO x y y x x x ey fy fˆ H ( k k ) ( ~ ˆ Bk k ) ;

Rashba Dresselhaus

x x y y z zeff B B Bˆ Bσ ⋅ = σ + σ + σ

Comparison of coefficients. E.g. only Rashba contribution:y

effx

kB

k

∝ α −

effB

E.A. de Andrada e Silva PRB 46, 1921 (1992)

Presence of Rashba & Dresselhaus contributions

Rashba orDresselhaus

Rashba and Dresselhaus

2 2kE ( ) k

2m= ± α − γ

2 2kE ( ) k

2m= ± α + γ

]

I

BVx

SO-interaction in a InGaAs quantum well

Vg

Beating of SdH-oscillations∝ ρxx

Nitta et al., Phys. Rev. Lett 78, 1335 (1997)

Quantum oscillations (SdH) reflect k-space area

1 2

B A

eπ ∆ = ℏ

kx

ky

A

kF

Periodicity of Shubnikov-de Haas (SdH) oscillations

2 2F sNote that A k 2 n= π = π

Origin of beating: two periodicities due to two k-space areas A1 and A2

ρxx

B

A1

A2

Nitta et al., Phys. Rev. Lett 78, 1335 (1997)

Tuning of Rashba coefficient a by gate voltage Vg

Nitta et al., Phys. Rev. Lett 78, 1335 (1997)

yeff

xCorresponds to tuning of spin orbit f

kBield, i.e.

k,

= α −

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

Epitaxial Fe-GaAs interface

[110]

[110]

As Ga

Fe

aGaAs=5.653 Å aFe=2.867 Å

Spin-orbit interaction plays also role in tunneling

Substrate

GaAs8 nm

Fe

Substrate

Fe

GaAs

Substrate

Au

Device fabrication

As-Cap

J. Moser et al. Appl. Phys. Lett. 89, 162106 (2006)

AlGaAs

Fe

GaAs

TEM-micrograph:C.-H. Lai, Tsing Hua University, Taiwan

Are always two ferromagnetic layers necessary to see a magnetizationdependent resistance?

Our model system: Fe/GaAs/Au with epitaxial Fe/GaAs interface

≠1 2R R

FeGaAsAu

TAMR: Tunneling Anisotropic Magnetoresistance

See also:Gould et al. PRL 93, 117203 (2004)(Ga,Mn)As/Al2O3/Au

R1 R2

MM

easy

Spin-valve like signal

Tunneling magnetoresistance: B dependence

φ = 0

J. Moser et al., Phys. Rev. Lett. 99, 056601, 2007

φ

B

-88 mV

Double step/single step switching dueto magnetic anisotropyFe on GaAs: Cubic + uniaxial anisotropy

[110]

B

[110]

measured at T = 4.2 K and -90 mV

Co/Fe(epi)/GaAs(8nm)/Au

Fe

GaAsAu

J. Moser et al., Phys. Rev. Lett. 99, 056601, 2007

Angular dependence of TAMR: negative bias

B=0.5T

R

M

Co/Fe(epi)/GaAs(8nm)/Au

Angular dependence of TAMR: positive bias

J. Moser et al., Phys. Rev. Lett. 99, 056601, 2007

measured at T = 4.2 K and +90 mV

Fe

GaAsAu

R

M

B=0.5T

Fe Au

zl zr

z

EF

fb

0 z BR DH H H H H= + + +

BR x y y x ii l r

i,

1H ( p p ) (z z )

== σ − σ δ −α∑ℏ

z(z)

H2

∆= − ⋅n σ

D x x y y1

H ( p (zz

)p )z

∂ ∂ = σ − σ ∂ ∂γ

2

01

H V(z)2 m(z)

= − ∇ ∇ +

2l r||

1|3 |

,1

T (E,ke

I dEd k [f (E) f (E)])(2 )

σσ=−

= −π ∑ ∫ℏ

particle transmissivity

lα rαγA. Matos-Abiague & J. Fabian, PRB 79, 155303 (2009)

Modelling

GaA

s

γγγγ = 0

αααα > γγγγ > 0 αααα < 0

γγγγ > 0

αααα = 0

[100]kx

ky

[100]

kx

ky

ky

[100]

kx

[100]

kx

ky

||w(k )

y x

x y

k - k

- k k

0

α γ α + γ

||( ) =w k

Spin-orbit field w(k)

lα γ

||( ) =w k

y x

x y

k - k

- k k

0

α γ α + γ

2[110]|| ||

Anisotropy determined by

T( ) f([ ( )] ) R / R 1~ (cos2 1)≈ ⋅ → − αγ φ −k n w k

Anisotropy vanishes for 0αγ →

Fe

GaAsAu

n

||w(k )

x

y

z

Origin of anisotropic resistance: superposition of Rashba & Dresselhaus SO-contribution

Fe Au

zl zr

z

EF

φb

J. Moser et al., Phys. Rev. Lett. 99, 056601, 2007

γ in GaAs: 24 eVA3°

2l (eVA )α °

-25.1-17.4

-0.6

42.3

Angular dependence of TAMR: bias dependence

J. Moser et al., Phys. Rev. Lett. 99, 056601, 2007See also:T. Uemura, Appl. Phys. Lett. 98,102503 (2011)

φ −= [110]

[110]

R( ) RTAMR

R

Fe on (Ga,Mn)As

Au

Fe

(Ga,Mn)As

si-GaAs (001)

F. Maccherozzi et al. PRL 101, 267201 (2008)

M. Sperl et al., Phys. Rev B 81, 035211 (2010)

XMCD: antiferromagnetic coupling

RT

US pat 61/133,344

Thin ferromagnetic iron film induces antiferromagnetic coupling in (Ga,Mn)As at room temperature. Minimum thickness of the coupled(Ga,Mn)As layer is at least 1 nm

F. Maccherozzi et al. PRL 101, 267201 (2008)M. Sperl et al., Phys. Rev B 81, 035211 (2010)

2 3 4

5

Proximity effect: exchange coupling betweenFe and Mn at Fe/(Ga,Mn)As interface

Spin injection: Proximity effect enhances TC

FP-34 C. Song et al.WP-30 M. Ciorga et al.WP-105 J. Shiogai et al.

Magnetism

Basic conceptsmagnetic moments, susceptibility, paramagnetism, ferromagnetismexchange interaction, domains, magnetic anisotropy,

Examples:detection of (nanoscale) magnetization structureusing Hall-magnetometry, Lorentz microscopy and MFM

Spin-Orbit interaction

Some basicsRashba- and Dresselhaus contribution, SO-interaction and effectivemagnetic field

Example: Ferromagnet-Semiconductor Hybrids: TAMR involving epitaxial Fe/GaAs interfaces

Magnetism and Spin-Orbit Interaction:

In retrospect

The End

top related