m. guidal, ipn orsay

Post on 22-Feb-2016

46 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

PHOTON 2011. Deep exclusive meson electroproduction : focus on vector mesons. Discussions with / material borrowed from : L. Favart, S. Kananov , P. Marage , C. Riedl , K . Park,…. M. Guidal, IPN Orsay. ,. Regge theory : . - PowerPoint PPT Presentation

TRANSCRIPT

Deep exclusive meson electroproduction: focus on vector mesons

Discussions with/material borrowed from: L. Favart, S. Kananov, P. Marage, C. Riedl, K. Park,…

,

Regge theory: Exchange of families of mesons in the t-channel

Regge theory: Exchange of families of mesons in the t-channel

M(s,t) ~ sa(t) where a(t) (trajectory) is the relation between the spin and the (squared) mass of a family of particles

M->sa(t)

stot~1/s x Im(M(s,t=0))->sa(0)-1 [optical theorem]

stot ds/dt

s t

ds/dt~1/s2 x |M(s,t)|2->s2a(t)-2 ->[ea(t)lns(s)]

,

,

,

Q2>>

,

Q2>>Q2>>

Some signatures of the (asymptotic) « hard » processes:

sL/sT~Q2

r/w/f/(J/Y)~9/1/2/8

sL~1/Q6 sT~1/Q8

s~|xG(x)|2

Q2 dependence:

W dependence: (for gluon handbag)

Ratio of yields: (for gluon handbag)

Saturation with hard scale of aP(0), b, …

SCHC : checks with SDMEs

H1, ZEUS

,

Q2>>Q2>>

H1, ZEUS

,

Q2>>Q2>>

H1, ZEUSCLAS

HERMESCOMPASS

H1, ZEUS

,

Q2>>Q2>>

H1, ZEUSCLAS

HERMESCOMPASS

+ « older »data from:E665, NMC,Cornell,…

H1, ZEUS

,

Q2>>Q2>>

H1, ZEUSCLAS

HERMESCOMPASS

+ « older »data from:E665, NMC,Cornell,…

Steepening W slope as a function of Q2

indicates « hard » regime(reflects gluon distribution in the proton)

W dependence

Two ways to set a « hard » scale:*large Q2

*mass of produced VM

W dependence

Steepening W slope as a function of Q2

indicates « hard » regime(reflects gluon distribution in the proton)

Universality : r, f at large Q2+M2 similar to J/y

aP(0) increases from “soft” (~1.1) to “hard” (~1.3) as a function of scale m2=(Q2+MV

2)/4. Hardening of W distributions with m2

Approaching handbag prediction of n=6(Q2 not asymptotic, fixed W vs fixed xB, stot vs sL, Q2 evolution of G(x)…)

Q2 dependence

sL~1/Q6 => Fit with s~1/(Q2+MV2)n

Q2 >0 GeV2 => n=2+/- 0.01 Q2 >10 GeV2 => n=2.5+/- 0.02 Q2 >0 GeV2 => n=2.486

+/- 0.08 +/-0.068

r: J/y:(S. Kananov)

Q2 dependence is damped at low Q2 and steepens at large Q2

t dependence

b decreases from “soft” (~10 GeV-2) to “hard” (~4-5 GeV-2) as a function of scale m2=(Q2+MV

2)/4

Ratios

r/w/f/(J/Y) ~ 9/1/2/8

sL/sT

(almost) compatible with handbag prediction (damping at large Q2)

SDMEs

HERMES

H1

(almost) no SCHC violation

At high energy (W>5 GeV), the general features of the kinematicsdependences and of the SDMEs are relatively/qualitatively well understood

Good indications that the “hard”/pQCD regime is dominantfor m2=(Q2+MV

2)/4 ~ 3-5 GeV2.

Data are relatively well described by GPD/handbag approaches

H1, ZEUS

,

Q2>>Q2>>

H1, ZEUSCLAS

HERMESCOMPASS

JLab & CLAS in Hall BDuty cycle 100% Emax6 GeV Pmax80%

Exclusive r0, w, f & r+ electroproduction on the proton @ CLAS6

S. Morrow et al., Eur.Phys.J.A39:5-31,2009 (r0@5.75GeV) J. Santoro et al., Phys.Rev.C78:025210,2008 (f@5.75GeV) L. Morand et al., Eur.Phys.J.A24:445-458,2005 (w@5.75GeV)

C. Hadjidakis et al., Phys.Lett.B605:256-264,2005 (r0@4.2 GeV) K. Lukashin et al., Phys.Rev.C63:065205,2001 (f@4.2 GeV) } e1-b

(1999)

} e1-6(2001-2002)

A. Fradi, Orsay Univ. PhD thesis (r+@5.75 GeV) } e1-dvcs(2005)

e1-6 experiment (Ee =5.75 GeV)(October 2001 – January 2002)

ep ep p+(p-)

Mm(epX)

Mm(epp+ X)

e

p

p+

(p-)

sr (g*p pr0) vs W

Administrateur

L. Morand et al., Eur.Phys.J.A24:445-458,2005 (w@5.75GeV)

C. Hadjidakis et al., Phys.Lett.B605:256-264,2005 (r0@4.2 GeV)

K. Lukashin, Phys.Rev.C63:065205,2001 (f@4.2 GeV)

J. Santoro et al., Phys.Rev.C78:025210,2008 (f@5.75GeV)

S. Morrow et al., Eur.Phys.J.A39:5-31,2009 (r0@5.75GeV)

wr0

f

r+

A. Fradi, Orsay Univ. PhD thesis, 2009 (r+@5.75GeV)

GK sL

fL

ep->epf ( K+

[K-])

VGG GPD model

+

VGG GPD model

GK GPD model

H, H, E, E (x,ξ,t)~ ~x+ξ x-ξ

tγ, π, ρ, ω…

-2ξ

xξ-ξ +

1-1 0

Quarkdistribution

q q Distribution amplitude

Antiquarkdistribution

“ERBL” region “DGLAP” region

W~1/x

ERBL DGLAP

DDs + “meson exchange”

DDs w/o “meson exchange” (VGG)

“meson exchange”

Comparison with r0, w, f

VMs (r0,w,f) the only exclusive process [with DVCS] measured over a W range of 2 orders of magnitude (sL,T, ds/dt, SDMEs,…)

At high energy (W>5 GeV), transition from “soft” to “hard”(m2 scale) physics relatively well understood (further workneeded for precision understanding/extractions)

At low energy (W<5 GeV), large failure of “hard” approach.This is not understood. Is the GPD/handbag approach settingat much larger Q2 or is the widely used GPD parametrisationin the valence region completely wrong ?

A lot of new data expected soon from JLab@11GeV,COMPASS (transv. target), HERA new analysis,…

W~1/x

GPDs/handbag

GPDs/handbag ???

gN->Np

sr (g*p pr0) vs W

Administrateur

Angular distribution analysis, cos qcm

Relying on SCHC (exp. check to the ~25% level)

Longitudinal cross section sL (g*Lp prL

0)

Interpretation “a la Regge” : Laget model

g*p pr0

g*p pw

g*p pfFree parameters:*Hadronic coupling constants: gMNN

*Mass scales of EM FFs: (1+Q2/L2)-2

Regge/Laget

sL (g*Lp prL0)

Pomeron s,f2

Exclusive r + electroproduction

p+

e

(p-)

(p)

gg

One event in CLAS

e p e’ [n] r+ e’ [n] p+p0 e’ [n] p+ g g

Channel selection

IC

EC

PRELIMIN

ARY

Total cross section s (Q2,xB) r+

Invariant massIM(p+p0)

Regge “hadronic” approach

+ r+p+

r+

n

r+

n

GPD “partonic” approach

r+L

H , E

ρ0 euHu - edHd

euEu - edEd

weuHu + edHd

euEu + edEd

ρ+ Hu - Hd

Eu - Ed

“Hadronic approach”: Laget model

r+

r0

r0

(*)

“Partonic approach”: GPDs

VGG GPD modelGK GPD model

r+

Exclusive f electroproduction

ep->epf ( K+

[K-])

GK sL

fL

Laget sT+esL

W=2.9 GeV

W=2.45 GeV

W=2.1 GeV

Exclusive w electroproduction

ep->epw ( p+p-

[p0])

cos(qcm) distribution fcm distribution

Cross section s(g*p pw)

Laget sT+esL

Laget esL VGG esL

(H&E)

Laget Regge model for g*p pw

Issue with GPD approach ifp0 exchange dominant :

p0->E

E subleading in handbag for VM production

~

~while

Cross section s(g*p pw) –Comparison with GPD calculation (VGG)-

L. Morand et al., Eur.Phys.J.A24:445-458,2005 (w@5.75GeV)

C. Hadjidakis et al., Phys.Lett.B605:256-264,2005 (r0@4.2 GeV)

K. Lukashin, Phys.Rev.C63:065205,2001 (f@4.2 GeV)

J. Santoro et al., Phys.Rev.C78:025210,2008 (f@5.75GeV)

S. Morrow et al., Eur.Phys.J.A39:5-31,2009 (r0@5.75GeV)

wr0

f

r+

A. Fradi, Orsay Univ. PhD thesis, 2009 (r+@5.75GeV)

W~1/x

GPDs/handbag

GPDs/handbag ???

Motivation to go to higher Q2 (but stay in valence region):

Approach asymptotic regime and test validity of power corrections

If (power corrected) handbag diagram in valence region: same Q2 dependence at low W than at large W:r0 and f should be different from w and r+, these latterhaving higher-twist t-channel exchanges

If higher twist contribution in valence region: cross section will drop faster as a function of Q2 at low W than at large W:

Overview of existing data (valence region)

Perspectives with CLAS12 & EIC

r0, w, f & r+ electroproduction on the proton @ CLAS6GPDs or not GPDs ?

100% acceptance & integrated over all variables but (xB,Q2)

6 GeV efixed p target

Counting ratesfor 1000 hours at 1034 cm-2s-1

Limitation comes from phase space

100% acceptance & integrated over all variables but (xB,Q2)

6 GeV efixed p target

Counting ratesfor 100 hours at 1034 cm-2s-1

Limitation comes from phase space

100% acceptance & integrated over all variables but (xB,Q2)

11 GeV efixed p target

Counting ratesfor 1000 hours at 1035 cm-2s-1

Limitation comes from phase space

100% acceptance & integrated over all variables but (xB,Q2)

11 GeV efixed p target

Counting ratesfor 1000 hours at 1035 cm-2s-1

Limitation comes from phase space

100% acceptance & integrated over all variables but (xB,Q2)

Counting ratesfor 1000 hours at 1034 cm-2s-1

11 GeV e60 GeV p

Limitation comes from luminosity

100% acceptance & integrated over all variables but (xB,Q2)

Counting ratesfor 1000 hours at 1034 cm-2s-1

11 GeV e60 GeV p

Limitation comes from luminosity

6 GeV efixed p target

11 GeV efixed p target

11 GeV e60 GeV p

CLAS@6 GeV S. Morrow et al., Eur.Phys.J.A39:5-31,2009 (r0@5.75GeV)

Back-up slides

IM(pp+)

IM(pp-)

LO (w/o kperp effect)

Soft overlap (partial)

Handbag diagram calculation has kperp effects to account for preasymptotic effects

LO (with kperp effect)

Interpretation in terms of GPDs ?

1) Ross-Stodolsky B-W for r0(770), f0(980) and f2(1270)with variable skewedness parameter,2) D++(1232) p+p- inv.mass spectrum and p+p- phase space.

Background Subtraction (normalized spectra)

ds/dt (g*p pr0)

Fit by ebt

Large tmin ! (1.6 GeV2)

sL(r+)[mb]

dsL/dt (r+)[mb]

Longitudinal cross sections

PRELIMIN

ARY

Comparison with r0, w, f

?

e -

e -Q ~ MeV 2 2

Q >>GeV 2 2

Increasing Q2:

Q2>>

GPDs parametrization based on DDs (VGG/GK model)

Strong power corrections… but seems to work at large W…

ds/dt (g*p pr0)

Fit by ebt

Large tmin ! (1.6 GeV2)

top related