ludovico biagi digital elevation models: th march 2015

Post on 10-Nov-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ludovico Biagi Digital Elevation Models: generation and applications DICA seminars, 13th march 2015

Outline

Digital Elevation Models: generation and applications Ludovico Biagi 1.  Fields, elevations, models and applications 2.  Elevations in cartography 3.  Digital models (& GRIDS) 4.  Generation techniques 5.  Spatial scale, resolution and accuracy 6.  Examples from local to global scale 7.  Other data models 8.  Morphology extraction 9.  Examples of applications 10. Heli-DEM project

2

Fields: a definition

A physical phenomenon that can be matematically described as a function of independent variables Example: the temperature at the ground level depends on 1 & 2: the geographical position (latitude/North and longitude/East), 4: the time: Our case: the topography elevation!

3

T = f (ϕ ,λ,t)

1 2( ) ( , ,..., )nz f x x x=x

Elevation: definition 4

Topography

Topography is the surface of the Earth, topography can be considered a field

Elevation: definition 5

Elevation of topography

Topography is the bare soil surface, not including vegetation, buildings,...

The Earth surface

Reference surface Geoid: equipotential surface for the Earth gravity field passing for the so-called mean sea level

The Earth surface

Reference surface Geoid: equipotential surface for the Earth gravity field passing for the so-called mean sea level

Topography

P1 = (ϕ1, λ1)

H(P1) = H(ϕ1, λ1)

P2 = (ϕ2, λ2)

H(P2)

P3 = (ϕ3, λ3)

H(P3)

The Earth surface

Elevation model: the Alp example

Surveying of elevations of particular points (summits, passes, ...), graphical interpolation

Topography: historical surveying

Principle of stereo vision for 3D reconstruction

By stereo vision 3D reconstruction of objects is possible Human vision!

The Earth surface: aerial photogrammetry

Analogic images Stereo vision principles are applied... Check points (ground truth) are needed to coregister the images Then georeferenced 3D models can be built by images stereo pairs

13 Stereo analysis

From 3D stereo analysis   Elevations of particular points

  Contour (equal elevation equally spaced) lines

The Earth surface: cartographic description

100

200

300 400

500

600

700 400

300 200

100

+ 739

+ 453 + 611

+ 87

+ points

contour lines

The Earth surface: cartographic description

Digital Models: definitions

A Digital Model is a set of digital data and tools that allows the computation of (orthometric) elevations of terrain points with a given accuracy

Continuous surface

TERRAIN

Discrete points

SAMPLED OBSERVATIONS

Continuous model

TERRAIN MODEL

Numerical models of digitally stored elevations

Example: the GRID model Georeferenced Matrix of equally spaced elevations

The Earth surface: Digital Elevation Models

Generally: a model to describe 2D (z=f(x,y)) fields

GRID DEM model

A georeferenced matrix of nodes, regularly spaced in X and Y

GRID DEM model

The origin is assigned (lower left node X and Y)

GRID DEM model

The total number of nodes in X and Y are assigned

GRID DEM model

The horizontal spatial resolution in X and Y is assigned

GRID DEM model

A numerical matrix of elevations (field values) is stored ...

GRID DEM model

+ the needed metadata to georeference it:

Reference Frame

Origin position (X & Y)

Number of rows (Ny) and columns (Nx)

Horizontal spatial resolution (Dx & Dy)

GRID DEM model

Cartography

Other geographic Informations

Topographic maps

Tematic maps

Contours

From cartography to Digital Models

DEM

Digital Elevation

Model

Geographic Information Systems

DEM

Vegetation

Buildings

Others ...

DEM - Applications

Classical cartography

New digital applications

versus

DEM - Applications

Primary

Ancillary

versus

DEM - Applications

Earth Science River basins: delineation Hydrological run off model Geomorphology Geology

Environmental and urban planning Meteorology, climatology Emergency management Forestry Pollution diffusion Agricultural planning Airborne images georeferencing

DEM - Applications

At the beginning: digitizing and interpolation of elevations from cartographic contour lines

Digital Elevation Models production

100 200

300 400

500

600 700 400

300 200 100

DEM from stereoscopic digital images

Images become digital Stereo vision principles are applied to metric digital images firstly air-borne

DEM from stereoscopic digital images

Images become digital Stereo vision principles are applied to metric digital images firstly air-borne then satellite-borne Digital Models are directly produced without maps as intermediate step

Multispectral satellite-borne sensors

Remote sensing ≈ 1970 ... Stereo pairs: 1986: SPOT 1, 10 m ... 1999: IKONOS2, 1m ... 2001: Quickbird 2, 0.5 m ... 2014: WorldView 3, 0.31 m  

Other techniques: LIDAR

From Baltsavias (http://www.igp.ethz.ch/photogrammetry/education/lehrveranstaltungen/Photo2_FS14/course/ALS-Baltsavias_2014a.pdf)

A Laser Scanner onboard to an aircraft emits laser pulses and records return times from topography The Laser scanner is georeferenced (GPS) and oriented (INS) Reflection time è Distance è (GPS+INS+Distance) è

è Reflecting surface elevation

è From 1990

Other techniques: SAR

Synthetic Aperture Radar Radar images of the same feature taken by two different directions (like stereo-optical images) Radargrammetry Images contain magnitude (intensity) of radar returns; pairs of images are used to extract 3D features airborne radargrammetry: from 1970 satellite radargrammetry: from 1980 Interferometry (InSAR) Images contain phase (timing) of radar returns; pairs of images separated by a known baseline are differenced in one interferogram, that is used to extract 3D features from 1990

DEM spatial scale

Spatial resolution of DEMs High resolution: 1 m or better Medium resolution: tenth of meters Low resolution: up to 1 Km Local models: LIDAR, aerial photogrammetry Regional, national: LIDAR, aerial photogrammetry, satellite remote sensing Global: Past: recompilation of existing cartographic sources ETOPO5 (1988): global grid with 5 arc minute (10 km) resolution Present: Satellite remote sensing by SAR and stereo techniques

Accuracy

Function of   terrain smoothness

  vegetation coverage Biases (RF alignement) and random errors In GRID: also function of the horizontal spatial resolution

Biases: errors in the reference frame of the model

Must be reduced by calibration with GCP’s (Ground Control Points), truth independent points on the terrain (for example RTK-GPS surveys)

DSM

Reference Model

Accuracy

A 2.5D calibration is applied

Fitting is performed by fixing X, Y and adjusting elevations

The mean difference between DTM heights and GCP’s is removed

Reference Model

DSM

Accuracy

Random errors remain and can be assessed by the Root Mean Square Error analysis.

The accuracy can be evaluated on Check Points (CP’s) that represent the truth, and have not been used to calibrate the model.

CP’s accuracy must be at least one order of magnitude better than the nominal one of the model.

Accuracy

The quality index is given by the

LE95 = 1.96 ss (Linear Error at 95 % probability) “ISO/TC 211: TS 19138 - Geographic Information - Data quality

measures - N 2029, 5 June, 2006 “ similar to the tolerance

TH = 2ssH

of Commissione Geodetica Italiana.

Accuracy

The accuracy is expressed as a function of the nominal scale of the relevant cartography.

Tolerances are defined: §  TH(a) in open field §  TH(b) in forest (tree coverage > 70%) §  TH(c) for buildings §  TEN in planimetry

Accuracy

Accuracy levels

Level Type Spacing (m)

TH(a) (m)

TH(b) (DEM)

(m)

TH(c) (DSM)

(m)

TEN (m)

0 DEM, DSM 40-100 30 30 30 20 1 DEM, DSM 20 10 20 10 10

2 DEM, DSM 20 4 ½ mean

trees height

5 4

3 DEM, DSM 10 2 ½ mean

trees height

3 2

4 DEM, DSM 5 0.60 1.20 0.80 0.60 5 DEM, DSM 2 0.40 0.80 0.54 0.40 6 DDEM, DDSM 1 0.60 1.20 0.80 0.60 7 DDEM, DDSM 0.50 0.30 0.60 0.40 0.30

8 DDEM, DDSM 0.10-0.20 0.20 0.30 0.26 0.20

Model generation issues 44

Digital Terrain Model: model of topography elevations

Model generation issues 45

Digital Surface Model: elevation of topography + forestry + buildings + ...

Almost all the observation techniques provide DSMs!

Model generation issues 46

  Extraction of DTMs from DSMs

  Data filtering (blunder identification)

  Reference frame registration

  Accuracy assessment

  Merging of local and partly overlapping DTMs

One LIDAR DTM example

PST-A (Piano Straordinario di Telerilevamento Ambientale) of Italian Ministry of Environment: main valleys of Po basin Gridded in geographic coordinates Spatial resolution: 10-5 degrees (≈1 m) Vertical accuracy ≈1 m

47

!

One photogrammetric DTM example

Regione Piemonte DTM Gridded in UTM coordinates Spatial resolution 50 m Vertical accuracy ≈2.5 m

48

!

Satellite global DSMs: SRTM

2000: Shuttle Radar Topography mission (SRTM) Based on 2 SIR-C/X-SAR (8.8 & 3.1 cm wl) radar systems (flew 60 mt apart) to produce interferometric images. Almost global coverage: 80% of Earth land surface (60°S – 60°N) Spatial resolution: 1 arcsec in USA, 3 arcsec Vertical accuracy: 15 m, presence of voids (no data) and artifacts New release @ 1 arcsec announced in 2014

Satellite global DSMs: GDEM (from ASTER)

Advanced Spaceborne Thermal Emission and Reflection Radiometer From 2000, NASA and Japan Remote sensing mission: multispectral sensor for several purposes GDEM1 (2009) and GDEM2 (2011): almost global coverage: 83°S – 83°N; spatial resolution: 1 arcsec Vertical accuracy: 10 m; presence of voids (no data) and artifacts

GMTED2010

By merging 11 data sources Global coverage, spatial resolution of 7.5, 15, 30 arc seconds Vertical accuracy: 30 m

Recomputation (interpolation) inside nodes

Other data models: TINs

Triangular Irregular Networks

Other data models: TINs

Irregularly spaced horinzontal nodes are connected by Delaunay trangulation

Y

X

Other data models: TINs

Y

X

Given one triangle, for each node (vertex)

Other data models: TINs

Y

X

Z

elevations are stored and define a 3D plane that can be used to compute elevations in other points

Other data models: TINs

For each node: identifier, X and Y coordinates, elevation

For each triangle: identifiers of the three vertices

Y

X

Z

58 TINs VS GRIDS

TIN is more complex but can be multiresolution: better for heterogeneous orography

Other data models: TINs

Himachal Pradesh region, centred in

31° 5' 22'' N, 76° 47' 51'' E

Count: 1052 x 1052 cells

Resolution: 30 m x 30 m

Area: 31 Km x 31 Km

Minimum h: 275 m

Maximum h: 2080 m

Mean h: 770 m

RMS h: 355 m

TIN / GRID storage size: 0.3

Other data models: TINs

Italian pre-alpine area (Como lake)

Statistics:

Count: 422’610 cells

Resolution: 2 m x 2 m

Area: 2 Km x 2 Km

Minimum h: 197.4 m

Maximum h: 332.3 m

Mean h: 225.3 m

RMS h: 27.8 m

TIN / GRID storage size: 0.5

Slope computation in a GRID node

The slope between the node and the 8 adjacent nodes can be numerically computed

Δ ij =

Hi − H j

dhorizontal ij

Slope in a GRID DEM node

Slope in a GRID DEM node

...

The slope is the maximum

Slope in a GRID DEM node

The aspect is the direction angle of the slope

Normal to topography

Sun direction θ

DEM Representation: shaded relief

θ

θ

θ

θ = 0°

θ = 90°

DEM Representation: shaded relief

DEM Representation: shaded relief

Contours

Shaded relief Color map

3D patches

Composed representations

composed

Composed representations

Shaded relief

Shaded relief + color classes

DEM, applications: Hydrography

aspects: water directions

DEM, applications: Hydrography

DEM, applications: Hydrography

DEM, applications: Hydrography

DEM, applications: Hydrography

Po basin

DEM, applications: Hydrography

Europe basins

DEM, applications: Hydrography

DEM, applications:visibility

Interest point

Profile

profile

visible part

profile not visible part

Planning of communications nodes

DICA, Geomatics Laboratory at Como Campus

THE HELI-DEM model estimation

L. Biagi, S. Caldera, L. Carcano, A. Lucchese, M. Negretti, F. Sansò, D. Triglione, M.G. Visconti

ISPRS 2014, Suzhou

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

General framework: European and alpine context

In  Europe  typically  na�onal  /  regional  (local)  DTMs  are  available  that  are  cut  

accordingly  to  administra�ve  borders  

In  some  areas  a  unified  DTM  could  be  useful    for  cross  border  analyses    

(for  example  in  the  Alps  for  the  hydrogeological  risks)  

DICA, Geomatics Laboratory at Como Campus

Techniques  to  cross  check,  re-­‐grid  and  merge  different  DTMs    (with  different  resolu�ons,  reference  frames  and  accuracies)    

have  to  be  tested  and  adopted  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

The HELI-DEM project (Interreg funding)

DICA, Geomatics Laboratory at Como Campus

Involved  partners  Regione   Lombardia,   Regione  Piemonte,   Politecnico   di   Milano,  Fondazione   Politecnico,   Politecnico  di  Torino,  SUPSI  di  Lugano  

Computa�on   of   a   unified   DTM   for   a   specific   alpine   area   btw   Italy  (Piedmont  and  Lombardy)  and  Switzerland  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

DTM  of  Piedmont  

DTM  of  Lombardy  

Resolution: 50 meters  Extension: Piedmont region  Year of creation: ’90s (re-organised in 2003)  Reference system:  WGS84 - IGM95 (ETRF89)  Coordinate system:  UTM fuse 32, orthometric heights  Accuracy:  2.5 m (in height), 4 m (in planimetry)  

SwissTopo  DTM  Resolution: 25 meters (1” sexagesimal)  Extension: Switzerland  Year of creation: 2001  Reference System: ETRS89  Coordinate system: geographic, orthometric heights LN02  

Accuracy: 1.5 - 3 m (in height)  

DTM  PST-­‐A  LiDAR    Resolution: 1 meter (10-5 sexadecimal degrees)  Extension: Piedmont and Lombardy – main idrographic basins  Year of creation: currently in realization  Reference system: WGS84-IGM95 (ETRF89)  Coordinate system: geographic, orthometric heights  Accuracy: ~ 1 m (in height)  

Steps of HD: 1. census of the available DTMs

DICA, Geomatics Laboratory at Como Campus

Resolution: 20 meters  Extension: Lombardy region  Year of creation: 2002  Reference system: Roma40  Coordinate system:  Gauss-Boaga fuse Ovest, orthometric heights  

Accuracy: 5-10 m (in height), 2 m (in planimetry)  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

Available  data  

LR  resolu�on  regional  DTMs  for  Piedmont,  Lombardy  and  Switzerland  

+  HR  DTM  (PST-­‐A)  for  Italian  main  valleys    

DTMs  in  different  Reference  Frames  and  projec�ons  

Needed  ac�ons  

1.a  Cross-­‐valida�ons  between  cross-­‐border  LR  regional  DTMs  

1.b  LR  DTMs  valida�on  by  HR  PST-­‐A  DTM  

2.a  Individual  LR  DTMs  re-­‐gridding  to  a  common  grid  

2.b  Merging  of  the  individual  results  to  produce  a  LR  unified  DTM  

3.  Correc�on  of  the  LR  DTM  with  PST-­‐A  data  

Following steps of HELI-DEM

DICA, Geomatics Laboratory at Como Campus

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

1.a Cross-validations between overlapping LR DTMs

Interpola�on  of  the  DTMs  in  test  points  Comparison  between  the  interpolated  eleva�ons    Corrected  specific  blunders  In  general,  no  biases  but  worse  sta�s�cs  than  nominal  accuracies  

SWITZERLAND  –  LOMBARDY  

mean = -0.1 m std = ±19 m

Example:  comparison  between  Lombardy  and  Switzerland    The  discrepancies  follow  digi�zing  patches  are  not  orographic  features  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

1.b LR DTMs validation by HR PST-A DTMs

Predic�on   of   PST-­‐A   (HR   LiDAR  DTM)  on  the  LR  DTMs  nodes  and    their  comparison      Sa�sfactory   sta�s�cs   with  localized  anomalies  

 n°  points:      4048660,    m:  0.5  m,  std:      6.6  m,    max:    204  m  (recent  landslide  in  rough  orography)  Ad   hoc   GNSS   RTK   surveys   in   anomalous   areas   confirm   the   sub  meter  accuracy  of  PST-­‐A  

DICA, Geomatics Laboratory at Como Campus

PST-­‐A   data   should   be   used   to   correct   the   LR   DTM   obtained   by  merging  the  input  LR  DTMs  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

2.a Individual re-gridding of input DTMs to a common grid

Required  individual  opera�ons  for  each  input  DTM  1.  Reference  Frame  /  coordinates  transforma�on    2.  Re-­‐gridding  of  all  input  DTMs  to  a  common  RF  and  grid  

DICA, Geomatics Laboratory at Como Campus

Output  RF:  ETRF2000,  Output  Grid:  geographic  Extents:        φ:  [45.10°  -­‐  46.70°  N],        λ:  [7.80°  -­‐  10.70°  E]  HR:              φ  =  2  x  10-­‐4  °,      ̴22  m,            λ    =  2  x  10-­‐4  °,      ̴15  m  #nodes:    116M  

Note  on  DTM  reference  frames  and  coordinates  transforma�ons    Input:  horizontally  gridded  3D  points  Output:  a  list  of  3D  points,  no  more  on  a  regular  grid  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

Bilinear  

A  input  DTM  is  a  models  To  re-­‐grid  it:    no  smoothing,  

isodetermined  interpola�on  by  local  polynomial  surfaces  

Bicubic  

2.a Individual re-gridding

DICA, Geomatics Laboratory at Como Campus

00 10 01 11z a a x a y a xy= + + +

z = a00 + a10x + a01y + a20x2 + a11xy + a02 y2

+a30x3 + a21x2 y + a12xy2 + a03 y3 + a31x

3 y

+a22x2 y2 + a13xy3 + a32x3 y2 + a23x2 y3 + a33x

3 y3

4  observa�ons  needed  Faster  

16  observa�ons  needed  &  slower    

Several  tests  on  our  data:    more  accurate  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Each  input  DTM  is  transformed  to  ETRF2000  

Each  output  node  is  computed  by  interpola�ng  the  nearest  16  RF-­‐transformed  nodes  

A  system  solu�on  (matrix  inversion)  is  needed  

The  spa�al  distribu�on  of  the  input  points  can  cause  ill  condi�oning  problems  that  should  be  regularized,  for  example  by:  

1.  annihila�on  of  eigenvalues  (by  Singular  Value  Decomposi�on)  

2.  introduc�on  of  redundant  observa�ons  (by  Least  Squares  es�ma�on)  

3.  Tychonoff  regulariza�on  

 

 

2.a RF transformation and re-gridding: the direct approach

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Interpola�on  with  regulariza�on  (SVD/LS)  has  been  implemented  and  tested  on  HELI-­‐DEM  dataset  

Regulariza�on  

1.  required  in  many  points,  

2.  introduces  (not  significant  but  undesired)  smoothing,  

3.  slowers  (significantly)  the  re-­‐gridding.  

A  different  approach  is  possible  in  DTM  re-­‐gridding,  that  is  the  praxis  in  image  /  digital  maps  registra�on  

Eleva�ons  of  DEMs  are  a�ributes  of  the  horizontal  (2D)  coordinates  of  the  nodes  and  not  part  of  3D  coordinates  

2.a RF transformation and re-gridding: the direct approach

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

For  each  input  DTM  

1.  RF  back  transforma�on  of  the  horizontal  coordinates  of  the  output  nodes  to  its  reference  frame  

2.  Interpola�on  of  the  input  DTM  on  the  back  transformed  horizontal  coordinates  of  the  output  nodes  

3.  A�ribu�on  by  indexing  of  the  interpolated  eleva�ons  to  the  output  grid  

2.a RF transformation and re-gridding: the inverse approach

Local  bicubic  interpola�on  on  a  regular  4  x  4  grid:    no  matrix  inversion  is  required    Nowhere  ill  condi�oning  problems:    everywhere  isodetermined  interpola�on  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Individual  interpola�ons  of  input  DTMs  on  output  nodes  and  back-­‐interpola�on  of  the  output  on  the  input  nodes

Lombardy  (30M  points):  no  bias,  Std  =  0.8  m    99.1  %  of  the  the  differences  smaller  than  3  meters  Five  outliers  

Switzerland  (11M  points):  no  bias,  Std  =  0.3  m    99.9  %  of  the  the  differences  smaller  than  3  meters  No  outliers  

Piedmont  (3M  points):  no  bias,  Std  =  0.2  m    99.9  %  of  the  the  differences  smaller  than  3  meters  No  outliers  

2.a RF transformation and re-gridding: the inverse approach

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Needed  in  overlap  areas  of  two  or  three  cross-­‐border  DTMs:  in  their  nodes  more  (2-­‐3)  interpolated  eleva�ons  are  available Their   simple   average   could   cause   sharp   discon�nui�es   at   the  borders  of  overlap  areas  

2.b Merging of individual interpolations in overlaps

In  each  node  a  weighted  average  of  DTMs  is  adopted    

H (x, y) = wDTMi(x, y)HDTM i (x, y)

i∑ ,

wDTMi(x, y) = Kd(x, y, DTMi ), K = 1/ d(x, y, DTMi )

i∑

  is   the   horizontal   distance   btw   the   node   to    average  and  the  border  of  DTM  i  

d(x, y, DTMi )

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Example    of  border  discon�nuity  (jump:  8  m)  

Needed  to  correct  LR  anomalies    Undersampling  of  PST-­‐A  on  LR  grid  

Computa�on  of  the  differences  between    undersampled  PST-­‐A  and  LR  DTM  

Filtering  of  the  differences  to    avoid  discon�nui�es  at  the  borders    btw  zero  and  not  zero  values  

(Bu�erworth  filter  implemented  by  FFT)    Applica�on  of  the  filtered  differences  to  LR  DTM  

3. Correction of the LR DTM with HR PST-A data

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

One  example  of  the  correc�on  effects  on  a  RTK  GNSS  sec�on    blue:  LR  DTM  differences  wrt    GNSS-­‐RTK    green:  PST-­‐A  DTM    differences  wrt    GNSS-­‐RTK    red:  corrected  DTM    differences  wrt    GNSS-­‐RTK    

3. Correction of the LR DTM with HR PST-A data

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

External  valida�on  by  all  the  RTK  GNSS  results    Interpola�on   of   original  &   PST-­‐A-­‐corrected  DTMs   on   the  GNSS   RTK  points  Computa�on   of   the   differences   between   interpolated   and   RTK  eleva�ons  

All  the  sta�s�cs  are  sa�sfactory  The  correc�ons  improve  the  results  

3. Correction of the LR DTM with HR PST-A data

DTM      bias  [m]  std  [m]    max  [m]    LR          3.4    5.5    24.2    UndSamp  PST-­‐A  -­‐0.3    1.0        7.2    Corrected  LR    -­‐0.4    1.7        8.8    

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

The final DTM

Note:    strange  Southern  and  Eastern  borders  due  the  projects  boundaries  

HD  DTM  

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como DICA, Geomatics Laboratory at Como Campus

Web publication of the products by a geoservice

A   geoservice   that   applies   OGC   (WMF   &  WCS)   standards   has   been  implemented  to  freely  publish  the  DTMs    WMS  h�p://www.helidemdataserver.como.polimi.it:8080/geoserver/Helidem2013/wms?service=wms&request=getcapabili�es    WCS    h�p://www.helidemdataserver.como.polimi.it:8080/geoserver/Helidem2013/wcs?service=wcs&request=getcapabili�es      

DIIAR, Laboratorio di Geomatica del Polo Territoriale di Como

Conclusions and outlooks

DICA, Geomatics Laboratory at Como Campus

A  unified  DTM  has  been  computed  for  HELI-­‐DEM  project  area    To  re-­‐grid  input  DTMs  on  the  output  grid,  an  inverse  approach,  similar  to  the  registra�on  of  RS  images  has  been  applied    To  merge   overlapping   interpola�ons,   a   weighted   average   has   been  implemented    To   correct   the   LR  DTM  with  HR  DTM,   a   filtered   (FFT)   approach   has  been  adopted    The   experience   and   the   implemented   procedures  will   be   applied   to  compute  a  more  complete  Western  Alpine  DTM  

top related