ltcc thermal gas viscometer heater module - …infoscience.epfl.ch/record/87980/files/2006 maeder...

Post on 17-Apr-2018

229 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

2006 IMAPS-EMPS Terme !ate" 1/20

LTCC thermal gas viscometer-

Heater module

Thomas Maeder, Caroline Jacq, Giancarlo Corradini, SigfridSträssler, Hansu Birol and Peter Ryser

EPFL-LPM, Lausanne, Switzerland

thomas.maeder@epfl.ch

lpm.epfl.ch

2006 IMAPS-EMPS Terme !ate" 2/20

Determination of gas viscosity

• Purpose: identification of gas mixtures

• Simple sensor principle: time relaxation

Viscous gas

2006 IMAPS-EMPS Terme !ate" 3/20

Determination of gas viscosity

• Purpose: identification of gas mixtures

• Simple sensor principle: time relaxation

Viscous gasThin gas

2006 IMAPS-EMPS Terme !ate" 4/20

Modular LTCC sensor

2006 IMAPS-EMPS Terme !ate" 5/20

Sensor principle

• Pressure differential generated by heating / cooling

2006 IMAPS-EMPS Terme !ate" 6/20

Sensor principle

• Pressure differential generated by heating / cooling

• Pressure measured by membrane sensor

2006 IMAPS-EMPS Terme !ate" 7/20

Sensor principle

• Pressure differential generated by heating / cooling

• Pressure measured by membrane sensor

• Pressure relaxation through meander

2006 IMAPS-EMPS Terme !ate" 8/20

Why LTCC (1) ?

• Ease of structuration

2006 IMAPS-EMPS Terme !ate" 9/20

Why LTCC (2) ?

• Integration of many functions

2006 IMAPS-EMPS Terme !ate" 10/20

Why LTCC (3) ?

• Microreactor & flowsensor

2006 IMAPS-EMPS Terme !ate" 11/20

Why LTCC (3) ?

• Microreactor & flowsensor

• Inclination sensor

2006 IMAPS-EMPS Terme !ate" 12/20

Why LTCC (3) ?

• Microreactor & flowsensor

• Inclination sensor

• Gas sensor (Golonka etal., 1998)

2006 IMAPS-EMPS Terme !ate" 13/20

Why LTCC (3) ?

• Microreactor & flowsensor

• Inclination sensor

• Gas sensor (Golonka etal., 1998)

• Flow sensor (Gongora etal., 2001)

2006 IMAPS-EMPS Terme !ate" 14/20

LTCC for membranes & meanders

• Small spacings

• Intricate layout

2006 IMAPS-EMPS Terme !ate" 15/20

LTCCsintering

Graphiteburnout

Cavities by graphite fugitive phase

2006 IMAPS-EMPS Terme !ate" 16/20

LTCCsintering

Graphiteburnout

Cavities by graphite fugitive phase

• Graphite burnsout shortlybefore LTCCdensifies.

• Spacing can becontrolled byheating rate.

2006 IMAPS-EMPS Terme !ate" 17/20

Heater module (1)

2006 IMAPS-EMPS Terme !ate" 18/20

Heater module (2)

2006 IMAPS-EMPS Terme !ate" 19/20

Heater module (2)

2006 IMAPS-EMPS Terme !ate" 20/20

Heater module (2)

2006 IMAPS-EMPS Terme !ate" 21/20

Results (1/3): thermal resistance

• Good correspondance with model

• Change = increase of air conductivity with temperature

• Some positive temperature drift at low power

2006 IMAPS-EMPS Terme !ate" 22/20

Results (2/3): lid temperature

• Fractional lid temperature rise (rel. to heating resistor)

• Air conductivity rises with increasing temperature.

• Lid (Al2O3) conductivity drops with increasing temp.

2006 IMAPS-EMPS Terme !ate" 23/20

Results (3/3): reference resistor

• Fractional reference resistor temperature rise

• Slight rise with increasing temperature, due toproportionally hotter lid

2006 IMAPS-EMPS Terme !ate" 24/20

Origin of thermal drift

• Thermal resistance vs. weighted reference (block+lid)

• No hysterisis with these boundary conditions

2006 IMAPS-EMPS Terme !ate" 25/20

Transient behaviour

• Very fast resistor response time (!1 s)

• Heating faster than cooling due to TCR

• Additional delayed response due to lid, etc.

2006 IMAPS-EMPS Terme !ate" 26/20

Thermal resistances

• Res. of base & heat sink compound: ca. 3% of total

• Average « parasitic » resistances: ca. 12%

• Lid + module: large resistances, slow equilibration

2006 IMAPS-EMPS Terme !ate" 27/20

Materials (& better alternatives)

0.026AirCavity

0.6Grease + Al2O3Heat sink comp.

0.2

60

Silicone glue

Sn-Ag-Cu solderJoints

24

150

Alumina 96%

Al, Al-SiLid

3

6

LTCC

LTCC+AgModule

Conductivity[W/m/K]

MaterialPart / layer

2006 IMAPS-EMPS Terme !ate" 28/20

Conclusions

• High thermal resistance (! 250"K/W)

• Average cavity !T @ 0.5"W: ca. +60K

• Generated pressure peak: ca. ±0.2"bar

• High speed (! 1s)

• Boundary conditions not yet optimal

• Improvement by using better materials

2006 IMAPS-EMPS Terme !ate" 29/20

Merci / Danke / Grazie / Hvala

THANK

YOU !

top related