light-driven molecular crystal actuators · 2013. 10. 3. · 2009, 131, 6890-6891. evolution ......

Post on 01-Apr-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Oct. 2, 2013

Light-Driven Molecular Crystal Actuators

Overview

Importance of solar energy harvesting

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

2

Primary energy demand is growing with population and the population is growing rapidly

Key World Energy Statistics, 2012. www.worldbank.org 3

Mill

ion

to

n o

il e

qu

ival

en

t Primary energy supply

The primary energy source has been mostly fossil fuels

4 Key World Energy Statistics, 2012.

Mtoe: Million ton oil equivalent

1973 2010

Coal/peat

Oil

Natural gas

Coal/peat

Oil

Natural gas

6,107 Mtoe 12, 717 Mtoe

Nuclear

Hydro Biofuels

And waste Renewable 0.9%

Nuclear

Hydro

Biofuels And waste

Renewable 0.1%

Burning fossil fuels should be decreased

Petitto L. A.; Holowka S.; Sergio L. E.; Ostry D. Nature, 2001, 413, 35-36. ELLIS E.C. Science, 2008, 320, 1587-1587. 5

Next generations Pollution

Renewable energy sources need to grow

Schiermeier Q.; Tollefson J.; Scully T.; Witze A.; Morton O.; Nature, 2008, 454, 816-823. 6

Wind Solar

Geothermal

Solar energy harvesting

Shah A.; Torres p.; Tscharner R.; Wyrsch N.; Keppner H. Science, 1999, 285, 692-698. Roeb M.; Müller-Steinhagen H. Science, 2010, 329, 773-774.

Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178.

Solar heating

Solar cells

Artificial photosynthesis

Light-driven molecular crystal actuators

7

What is a light-driven molecular actuator?

Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178. 8

1 mm

This

imag

e is

th

e f

irst

fra

me

of

a vi

de

o t

hat

co

uld

b

e f

ou

nd

in t

he

su

pp

ort

ing

info

rmat

ion

of

the

ci

ted

pap

er

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

9

Solid phase photoinduced isomerization

Irie M.; Kobatake S.; Horichi M. Science, 2001, 291, 1769-1772. 10

Surface A

Surface B

116° 116°

1.0 mm

λ=366 nm

λ> 500 nm

Open ring Closed ring

What is atomic force microscopy (afm)?

11

Detector

Scanner

Cantilever

Sample

Reversible steps and valleys form on two faces of the crystal

12

Surface A

Surface B

before UV irradiation after UV Irradiation after visible irradiation

Surface A

Surface B

116°

Irie M.; Kobatake S.; Horichi M. Science, 2001, 291, 1769-1772.

λ=366 nm

λ> 500 nm

Longer irradiation time forms more 1 nm height steps on surface A

13 Irie M.; Kobatake S.; Horichi M. Science, 2001, 291, 1769-1772.

Surface A

Comparison of closed and open-ring isomers shows a considerable molecular shape change upon isomerization

1.41 nm

0.49 nm 0.39 nm

1.39 nm

14 Irie M.; Kobatake S.; Horichi M. Science, 2001, 291, 1769-1772.

λ=366 nm

λ> 500 nm

Molecular shape change results in crystal deformation

Surface A

Surface B

116°

b

c c

a

β

1.0 nm

Irie M.; Kobatake S.; Horichi M. Science, 2001, 291, 1769-1772.

1.41 nm

0.49 nm

15

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

16

Reversible single to single crystal transformation accompanied with crystal deformation

Kobatake S.; Takami S.; Muto H.; Ishikawa T.; Irie M. Nature, 2007, 446, 778-781.

10 µM 10 µM

17

λ=365 nm

λ> 500 nm

As the reaction proceeds, the tension increases in the lattice

18

10 µM 10 µM

θ (

°)

Absorbance at 600 nm

Kobatake S.; Takami S.; Muto H.; Ishikawa T.; Irie M. Nature, 2007, 446, 778-781.

Ab

sorb

ance

Wavelength/nm

λ=365 nm

λ> 500 nm

The solid phase conversion is 70% under photostationary state

Ab

sorb

ance

Wavelength/nm

Kobatake S.; Takami S.; Muto H.; Ishikawa T.; Irie M. Nature, 2007, 446, 778-781.

19

10 µM 10 µM

λ=365 nm

λ> 500 nm

Crystal packing explains the crystal shape change

20

A. Open-ring B. closed-ring after irradiation

C. Closed-ring crystalized from solution

Kobatake S.; Takami S.; Muto H.; Ishikawa T.; Irie M. Nature, 2007, 446, 778-781.

Single crystals have Fast response time

Each frame is 25 micro second

21 Kobatake S.; Takami S.; Muto H.; Ishikawa T.; Irie M. Nature, 2007, 446, 778-781.

1 2 3 4 5 6

355 nm (8 ns)

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

22

Azo-dye crystals bend reversibly

Koshima H.; Ojima N.; Uchimoto H. J. Am. Chem. Soc. 2009, 131, 6890-6891. 23

λ=365 nm

heat

UV

20 μm

a

a b

c a

What is X-ray diffraction (XRD)?

X-ray source

Crystaline sample

Bragg’s law nλ=2dSinθ

24

d

inte

nsi

ty (

cps)

2θ (degree)

Detector

θ

The crystal deforms reversibly

25

inte

nsi

ty (

cps)

2θ (degree)

rela

tive

inte

nsi

ty, %

Time (s)

UV stop

UV 5 s

inte

nsi

ty (

cps)

2θ (degree)

Koshima H.; Ojima N.; Uchimoto H. J. Am. Chem. Soc. 2009, 131, 6890-6891.

After irradiation Before irradiation

Around 1% of molecules react in solid phase

after 30 minutes

2.35

2.23

26 Koshima H.; Ojima N.; Uchimoto H. J. Am. Chem. Soc. 2009, 131, 6890-6891.

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

27

Crystal phase salicylideneaniline isomerization

Harada J; Uekusa H; Ohashi Y. J. Am. Chem. Soc. 1999, 121, 5809-5810. 28

λ=730 nm λ= 530 nm

HNAN crystals dispersed in PVDF–HFP forms composites that bend reversibly upon UV illumination

Lan T.; Chen W. Angew. Chem. Int. Ed. , 2013, 52, 6496-6500.

2-hydroxynaphthylidene-1’-naphthylamine (HNAN)

Polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP)

dark

29

λ=360 nm

75 mm x 25 mm x 52 μm

Ave

rage

dis

pla

cem

ent/

mm

g

HNAN mass percentage

The bending is reversible and relatively strong

30

cycle

Dis

pla

cem

ent

/ m

m

Lan T.; Chen W. Angew. Chem. Int. Ed. , 2013, 52, 6496-6500.

The direction of bending depends on the concentration gradient direction of HNAN in the composite

31

10 μm

count

2 μm

cou

nt

included angle (°)

Lan T.; Chen W. Angew. Chem. Int. Ed. , 2013, 52, 6496-6500.

HNAN crystals are responsible for bending

32

time/s

dis

pla

cem

ent/

μm

2θ (°)

HNAN

PVDF–HFP

composite

Lan T.; Chen W. Angew. Chem. Int. Ed. , 2013, 52, 6496-6500.

1. Large single crystals of HNAN responds to light:

2. XRD shows that HNAN is crystalline in the composite:

3. PVDF-HFP does not respond to light.

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

33

π–π interactions and hydrogen-bondings increase the flexibility

Sun J.; Li W.; Chen C.; Ren C.; Pan D.; Zhang J. Angew. Chem. Int. Ed. , 2013, 52, 6653-6657.

3.745 Å

3.499 Å

3.745 Å

3.647 Å

3.601 Å

3.601 Å

34

Highest flexibility ever seen among macroscopic crystals

35

1 mm

Sun J.; Li W.; Chen C.; Ren C.; Pan D.; Zhang J. Angew. Chem. Int. Ed. , 2013, 52, 6653-6657.

Contraction of on one side of the crystal bends the crystal towards itself

36 Sun J.; Li W.; Chen C.; Ren C.; Pan D.; Zhang J. Angew. Chem. Int. Ed. , 2013, 52, 6653-6657.

Evolution of light-driven molecular crystal actuators

Reversible surface morphology change

Reversible microcrystal shape change

Reversible bending of microcrystals

Reversible bending of composites that contain tiny crystals

Irreversible bending of macrocrystals

Reversible bending of macrocrystals

37

Macro crystals bend reversibly

38 Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178.

λ=365 nm from right

side

λ>440 nm From right

side

1 mm

Electrocyclic reaction increases the height of the molecule

39

b

a

H: 0.534 nm H: 0.679 nm

B: 1.411 nm B: 1.554 nm

Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178.

λ= 365 nm

λ> 440 nm

Molecular geometry change increases the surface area on one side of the crystal and bends it away

40

UV

UV

b

a

c

b

Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178.

A 0.17 mg piece of crystal pulls up 46.77mg of a lead ball

41 Morimoto M.; Irie M. J. Am. Chem. Soc. 2010, 132,14172-14178.

This

imag

e is

th

e f

irst

fra

me

of

a vi

de

o t

hat

co

uld

b

e f

ou

nd

in t

he

su

pp

ort

ing

info

rmat

ion

of

the

ci

ted

pap

er

A cocrystal of two similar diarylalkenes bends towards light

42 Terao F.; Morimoto M.; Irie M. Angew. Chem. Int. Ed. 2012, 51, 901 –904.

A B

100 % pure A

A:B 37:63

λ= 365 nm

The crystal works reversible

43 Terao F.; Morimoto M.; Irie M. Angew. Chem. Int. Ed. 2012, 51, 901 –904.

1st cycle 500th cycle 1000th cycle

0.5 mm

cycle number

tip

dis

pla

cem

ent

/mm

The crystal bends under water remotely

UV Vis.

1 mm

44 Terao F.; Morimoto M.; Irie M. Angew. Chem. Int. Ed. 2012, 51, 901 –904.

The crystal spins a gearwheel

45 Terao F.; Morimoto M.; Irie M. Angew. Chem. Int. Ed. 2012, 51, 901 –904.

This

imag

e is

th

e f

irst

fra

me

of

a vi

de

o t

hat

co

uld

b

e f

ou

nd

in t

he

su

pp

ort

ing

info

rmat

ion

of

the

ci

ted

pap

er

Conclusions

Molecular crystals can convert light to mechanical motion

Small sized crystals are able to result in macroscopic motion if they are used in composites

Inter molecular interactions could be established by molecular design

Additives can increase the strength and flexibility of the crystal

46

Acknowledgements

Dr. Jackson

Dr. Xuefei

Dr. Saffron

Dr. Redko

Greg, Jason, Souful, Mahlet, Chao, Fatmata, Darya and Andrew

47

And ...

Thank You For Your Attention

top related