lecture 3: dissipative systems and non-equilibrium bose...

Post on 19-Apr-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Lecture 3: Dissipative Systems and Non-EquilibriumBose-Einstein Condensation

Marzena Hanna Szymanska

Department of PhysicsUniversity of Warwick

March 2011 / Universite Libre de Bruxelles

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 1 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Acknowledgements

Theory

J. Keeling

P. B. Littlewood

F. M. Marchetti

Experiment

G. Roumpos

Y. Yamamoto

D. Sanvitto

L. Vina

Funding:

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 2 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Macroscopic Quantum Coherence

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Macroscopic Quantum Coherence

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Macroscopic Quantum Coherence

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

1 Non-equilibrium condensation in dissipative environmentPolariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

2 Perspectives

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complex

extended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp

+Xα

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα”

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†k+

Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theory

f

b

Green’s functions on Keldysh contour (D<, D>, DT , DT ) for example

D>(t) = −iD

Tc

“ψ(t , b)ψ†(0, f )

”E.

It is convenient to move to ψcl/q = ψ(t,f )±ψ(t,b)√2

, then

D = −ifi

Tc

„ψcl (t)ψq(t)

«“ψ†cl (t) ψ†q(t)

”fl=

„DK DR

DA 0

«.

In practice we usually know D−1 but 0

ˆDA˜−1ˆ

DR˜−1 ˆD−1˜K

!„DK DR

DA 0

«=

„1 00 1

«,

andˆD−1˜K = −

ˆDR˜−1 DK ˆDA˜−1 so DK = −DR ˆD−1˜K DA.

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theory

f

b

Green’s functions on Keldysh contour (D<, D>, DT , DT ) for example

D>(t) = −iD

Tc

“ψ(t , b)ψ†(0, f )

”E.

It is convenient to move to ψcl/q = ψ(t,f )±ψ(t,b)√2

, then

D = −ifi

Tc

„ψcl (t)ψq(t)

«“ψ†cl (t) ψ†q(t)

”fl=

„DK DR

DA 0

«.

In practice we usually know D−1 but 0

ˆDA˜−1ˆ

DR˜−1 ˆD−1˜K

!„DK DR

DA 0

«=

„1 00 1

«,

andˆD−1˜K = −

ˆDR˜−1 DK ˆDA˜−1 so DK = −DR ˆD−1˜K DA.

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theory

f

b

Green’s functions on Keldysh contour (D<, D>, DT , DT ) for example

D>(t) = −iD

Tc

“ψ(t , b)ψ†(0, f )

”E.

It is convenient to move to ψcl/q = ψ(t,f )±ψ(t,b)√2

, then

D = −ifi

Tc

„ψcl (t)ψq(t)

«“ψ†cl (t) ψ†q(t)

”fl=

„DK DR

DA 0

«.

In practice we usually know D−1 but 0

ˆDA˜−1ˆ

DR˜−1 ˆD−1˜K

!„DK DR

DA 0

«=

„1 00 1

«,

andˆD−1˜K = −

ˆDR˜−1 DK ˆDA˜−1 so DK = −DR ˆD−1˜K DA.

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryFor example for free bosons we have

DR/A = (ω − ωk ± i0)−1, DK = −2πi(2nB(ω) + 1)δ(ω − ωk ).

The partition function

Z = NZ Y

pD[ψp, ψp]

D[φα, φα]Y

k

D[Ak ,Ak , Bk ,Bk , Ψk ,Ψk ]eiS ,

where φ = (b, a) and φ = (b, a)T.

Lets look in detail at photons and their decaying bath

Sψ+Sbathψ = −Z ∞

−∞dωX

pψp(ω)

„0 ω + ωp + dA(k,−ω)

ω + ωp + dR(k,−ω) dK (k,−ω)

«ψp(−ω).

assume flat bath’s density of states and constant coupling to the system

Sψ + Sbathψ =

Z ∞

−∞dωX

pψp(ω)

„0 −ω − ωp − iκ

−ω − ωp + iκ 2iκFψ(−ω)

«ψp(−ω).

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryFor example for free bosons we have

DR/A = (ω − ωk ± i0)−1, DK = −2πi(2nB(ω) + 1)δ(ω − ωk ).

The partition function

Z = NZ Y

pD[ψp, ψp]

D[φα, φα]Y

k

D[Ak ,Ak , Bk ,Bk , Ψk ,Ψk ]eiS ,

where φ = (b, a) and φ = (b, a)T.

Lets look in detail at photons and their decaying bath

Sψ+Sbathψ = −Z ∞

−∞dωX

pψp(ω)

„0 ω + ωp + dA(k,−ω)

ω + ωp + dR(k,−ω) dK (k,−ω)

«ψp(−ω).

assume flat bath’s density of states and constant coupling to the system

Sψ + Sbathψ =

Z ∞

−∞dωX

pψp(ω)

„0 −ω − ωp − iκ

−ω − ωp + iκ 2iκFψ(−ω)

«ψp(−ω).

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryFor example for free bosons we have

DR/A = (ω − ωk ± i0)−1, DK = −2πi(2nB(ω) + 1)δ(ω − ωk ).

The partition function

Z = NZ Y

pD[ψp, ψp]

D[φα, φα]Y

k

D[Ak ,Ak , Bk ,Bk , Ψk ,Ψk ]eiS ,

where φ = (b, a) and φ = (b, a)T.

Lets look in detail at photons and their decaying bath

Sψ+Sbathψ = −Z ∞

−∞dωX

pψp(ω)

„0 ω + ωp + dA(k,−ω)

ω + ωp + dR(k,−ω) dK (k,−ω)

«ψp(−ω).

assume flat bath’s density of states and constant coupling to the system

Sψ + Sbathψ =

Z ∞

−∞dωX

pψp(ω)

„0 −ω − ωp − iκ

−ω − ωp + iκ 2iκFψ(−ω)

«ψp(−ω).

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryFor example for free bosons we have

DR/A = (ω − ωk ± i0)−1, DK = −2πi(2nB(ω) + 1)δ(ω − ωk ).

The partition function

Z = NZ Y

pD[ψp, ψp]

D[φα, φα]Y

k

D[Ak ,Ak , Bk ,Bk , Ψk ,Ψk ]eiS ,

where φ = (b, a) and φ = (b, a)T.

Lets look in detail at photons and their decaying bath

Sψ+Sbathψ = −Z ∞

−∞dωX

pψp(ω)

„0 ω + ωp + dA(k,−ω)

ω + ωp + dR(k,−ω) dK (k,−ω)

«ψp(−ω).

assume flat bath’s density of states and constant coupling to the system

Sψ + Sbathψ =

Z ∞

−∞dωX

pψp(ω)

„0 −ω − ωp − iκ

−ω − ωp + iκ 2iκFψ(−ω)

«ψp(−ω).

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryThe final form

S = −iXα

TrlnG−1α,α +

Z ∞

−∞dtdt ′

Xpψp(t)

„0 i∂t − ωp−iκ

i∂t − ωp + iκ 2iκFΨ(t − t ′)

«ψp(t ′)

Introducing the abbreviations λcl =P

pgp,α√

2ψp,cl and λq =

Pp

gp,α√2ψp,q

G−1(t , t ′) =„λq(t)σ+ + λq(t)σ− ∂tσ0 − εασ3 − λcl (t)σ+ − λcl (t)σ−−iγσ0

i∂tσ0 − εασ3 − λcl (t)σ+ − λcl (t)σ−+iγσ0 −λq(t)σ+ + λq(t)σ− + 2iγ(Fbσ↑ + Faσ↓)

«

For steady-state solution ψ(r, t) = ψ0e−iµS t we can invert and get usingE2 = (ε− 1

2µS)2 + g2|ψ|2

GK (ν) = −2iγ

[(ν+iγ)2 − E2][(ν−iγ)2 − E2]

ׄ

ν + ε+iγ gψ0gψ0 ν − ε+ iγ

«„FB(ν) 0

0 FA(ν)

«„ν + ε−iγ gψ0

gψ0 ν − ε−iγ

«,

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Keldysh non-equilibrium field theoryThe final form

S = −iXα

TrlnG−1α,α +

Z ∞

−∞dtdt ′

Xpψp(t)

„0 i∂t − ωp−iκ

i∂t − ωp + iκ 2iκFΨ(t − t ′)

«ψp(t ′)

Introducing the abbreviations λcl =P

pgp,α√

2ψp,cl and λq =

Pp

gp,α√2ψp,q

G−1(t , t ′) =„λq(t)σ+ + λq(t)σ− ∂tσ0 − εασ3 − λcl (t)σ+ − λcl (t)σ−−iγσ0

i∂tσ0 − εασ3 − λcl (t)σ+ − λcl (t)σ−+iγσ0 −λq(t)σ+ + λq(t)σ− + 2iγ(Fbσ↑ + Faσ↓)

«

For steady-state solution ψ(r, t) = ψ0e−iµS t we can invert and get usingE2 = (ε− 1

2µS)2 + g2|ψ|2

GK (ν) = −2iγ

[(ν+iγ)2 − E2][(ν−iγ)2 − E2]

ׄ

ν + ε+iγ gψ0gψ0 ν − ε+ iγ

«„FB(ν) 0

0 FA(ν)

«„ν + ε−iγ gψ0

gψ0 ν − ε−iγ

«,

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 10 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 10 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 10 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T :

laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T :

laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0:

well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008, Disordered pined vortices, Carusotto et al., 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 12 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008, Disordered pined vortices, Carusotto et al., 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 12 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008, Disordered pined vortices, Carusotto et al., 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 12 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

Equilibrium BECn(ω) = nB(ω) i.e n(µ) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges[Szymanska et al., PRL ’06; PRB ’07]

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges[Szymanska et al., PRL ’06; PRB ’07]

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 13 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Laser Limit

Maxwell-Bloch equations

∂tψ = −iω0ψ − κψ + gP,

∂t P = −2iεP − ηP + gψN

∂t N = λ(N0 − N)− 2g(ψ∗P + P∗ψ),

where P = −in〈a†b〉,N = n〈b†b − a†a〉.

Green’s function

ψ = iDR(ω)Fe−iωt

thus

[DR ]−1 = ω − ω0 + iκ+g2N0

ω − 2ε+ i2γ. Keeling et al. arXiv:1001.3338 (2010)

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 14 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Laser Limit

Polariton BEC Laser

Keeling et al. arXiv:1001.3338 (2010)

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 15 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

= ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ = c|p|

−ix ±q

c2p2−x2

Landau criterion? vc = minpω(p)

p[also using different model Wouters & Carusotto PRL’07]

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 16 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Landau criterion? vc = minpω(p)

p[also using different model Wouters & Carusotto PRL’07]

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 16 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Landau criterion? vc = minpω(p)

p[also using different model Wouters & Carusotto PRL’07]

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜

Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 16 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Landau criterion? vc = minpω(p)

p[also using different model Wouters & Carusotto PRL’07]

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 16 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submitted

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submitted

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submitted

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«

Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submitted

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submitted

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Decay of spatial correlations

g1(∆x , t = 0) = nS exp−Z

kdk2π

Zdω2π

[1− J0(k∆x)] iD<φφ(ω, k)

ff∆x→∞'

„∆xl0

«−ap

D<φφ = DKφφ − DR

φφ + DAφφ iDφφ =

i8nS

(1 − 1)D„

1−1

«

i∂tψ =

"−

~2∇2

2m+ U|ψ|2 + i

“γnet − Γ|ψ|2

”#ψ

DR =1

ω2 + 2iγnetω − ξ2k

„µ+ εk + ω + iγnet −µ+ iγnet

−µ− iγnet µ+ εk − ω − iγnet

«Thermal distribution

[D−1]K = 2iγnet coth(βω/2)

„1 00 −1

«→ aP = mkBT/2πns~2 as for the closed system

Non-equilibrium flat distribution

[D−1]K = 2iζ„

1 00 1

«→ aP ∝ ζ/nS

G. Rompos, Y. Yamamoto et al. submittedMarzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 17 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Finite size effects: Single mode vs many modeDψ†(r , t)ψ(0, r ′)

E' |ψ0|2 exp

ˆ−Dφφ(t , r , r ′)

˜

Dφφ(t , r , r ′) from sum of phase modes. Study ct � r limit:

Dφφ(t , r , r) ∝nmaxX

n

Zdω2π

|ϕn(r)|2(1− eiωt )˛(ω + ix)2 + x2 − (n∆)2

˛2

∆ �p

x/t � Emax Dφφ ∼ 1 + ln(Emaxp

t/x)

px/t � ∆ � Emax Dφφ ∼

“πC2x

”“t

2x

”Keeling et al. arXiv:1001.3338 (2010)

Atom Laser

[Atom Laser, E.W. Hagley et al., Science (1999)]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 18 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Finite size effects: Single mode vs many modeDψ†(r , t)ψ(0, r ′)

E' |ψ0|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dφφ(t , r , r ′) from sum of phase modes. Study ct � r limit:

Dφφ(t , r , r) ∝nmaxX

n

Zdω2π

|ϕn(r)|2(1− eiωt )˛(ω + ix)2 + x2 − (n∆)2

˛2

∆ �p

x/t � Emax Dφφ ∼ 1 + ln(Emaxp

t/x)

px/t � ∆ � Emax Dφφ ∼

“πC2x

”“t

2x

”Keeling et al. arXiv:1001.3338 (2010)

Atom Laser

[Atom Laser, E.W. Hagley et al., Science (1999)]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 18 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Finite size effects: Single mode vs many modeDψ†(r , t)ψ(0, r ′)

E' |ψ0|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dφφ(t , r , r ′) from sum of phase modes. Study ct � r limit:

Dφφ(t , r , r) ∝nmaxX

n

Zdω2π

|ϕn(r)|2(1− eiωt )˛(ω + ix)2 + x2 − (n∆)2

˛2

∆ �p

x/t � Emax Dφφ ∼ 1 + ln(Emaxp

t/x)

px/t � ∆ � Emax Dφφ ∼

“πC2x

”“t

2x

Keeling et al. arXiv:1001.3338 (2010)

Atom Laser

[Atom Laser, E.W. Hagley et al., Science (1999)]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 18 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Finite size effects: Single mode vs many modeDψ†(r , t)ψ(0, r ′)

E' |ψ0|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dφφ(t , r , r ′) from sum of phase modes. Study ct � r limit:

Dφφ(t , r , r) ∝nmaxX

n

Zdω2π

|ϕn(r)|2(1− eiωt )˛(ω + ix)2 + x2 − (n∆)2

˛2

∆ �p

x/t � Emax Dφφ ∼ 1 + ln(Emaxp

t/x)

px/t � ∆ � Emax Dφφ ∼

“πC2x

”“t

2x

”Keeling et al. arXiv:1001.3338 (2010)

Atom Laser

[Atom Laser, E.W. Hagley et al., Science (1999)]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 18 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Finite size effects: Single mode vs many modeDψ†(r , t)ψ(0, r ′)

E' |ψ0|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dφφ(t , r , r ′) from sum of phase modes. Study ct � r limit:

Dφφ(t , r , r) ∝nmaxX

n

Zdω2π

|ϕn(r)|2(1− eiωt )˛(ω + ix)2 + x2 − (n∆)2

˛2

∆ �p

x/t � Emax Dφφ ∼ 1 + ln(Emaxp

t/x)

px/t � ∆ � Emax Dφφ ∼

“πC2x

”“t

2x

”Keeling et al. arXiv:1001.3338 (2010)

Atom Laser

[Atom Laser, E.W. Hagley et al., Science (1999)]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 18 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Polariton superfluidity

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 19 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Conclusion

Unified description of condensates (BEC and BCS) and lasers

Bose-Einstein distribution not special - BEC possible for any “bosonic” distribution(i.e divergent at some frequency)

However, dissipation and driving changes spectrum of excitationsdifferent collective modes

affected correlations i.e spatial and temporal coherence

spontaneous vortices

changed superfluid properties - still under experimental investigation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 20 / 20

OutlineNon-equilibrium condensation in dissipative environment

Perspectives

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsFinite size effects: single vs many modesSuperfluidity

Conclusion

Unified description of condensates (BEC and BCS) and lasers

Bose-Einstein distribution not special - BEC possible for any “bosonic” distribution(i.e divergent at some frequency)

However, dissipation and driving changes spectrum of excitationsdifferent collective modes

affected correlations i.e spatial and temporal coherence

spontaneous vortices

changed superfluid properties - still under experimental investigation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 20 / 20

Extra slides

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 21 / 21

top related