lecture 2 camera calibration

Post on 11-Feb-2017

585 Views

Category:

Education

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Lecture 2: Camera Calibration

Lecture 2Camera Calibration

Joaquim SalviUniversitat de Girona

Visual Perception

2

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

3

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

4

Lecture 2: Camera Calibration

– Dense reconstruction – Visual inspection

– Object localization – Camera localization

2.1 Calibration Introduction

• Some applications of this capability include

5

Lecture 2: Camera Calibration

Image courtesy of C. Taylor

“The Scholar of Athens,” Raphael, 1518

2.1 Calibration Introduction – Perspective Imaging

6

Lecture 2: Camera Calibration

WZ

WY

WX

WO

wP

Image Plane

{ }W

uP

IY

IX

IO

{ }I

Focal Point

WZ

WY

WX

WO

wP

Image Plane

{ }W

uP

IY

IX

IO

{ }I

Focal Point

1

I

u

I I

u u

X

P Y

1

W

w

W

W w

w W

w

X

YP

Z

In pixels

In metrics?

wl

wl

0

W

w

W

W w

w W

w

X

Yl

Z

2.1 Calibration Introduction

7

Lecture 2: Camera Calibration

Modelling

G(X) X ?

Calibration

X !!!

Modelling:

• Determine the equation that approximates the camera behaviour.

• Define the set of unknowns in the equation (camera parameters).

• The camera model is an approximation of the physics & optics of the camera.

Calibration:

• Get the numeric value of every camera parameter.

G(X)

2.1 Calibration Introduction

8

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

9

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

10

Lecture 2: Camera Calibration

2.2 Pinhole Model

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

dP

IY

IXIO{ }I

RY

RX{ }R

RO

Image

coordinate

system

11

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 1: World to Camera)

Camera

coordinate

system

World

coordinate

system

CY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

C

WK

Step 1

12

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 2: Projection)

Camera

coordinate

system

World

coordinate

system

CY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uPf

Step 2

wX

wY

wZ

uX

uY

RY

RX{ }R

RO

13

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 3: Lens Distortion)

Camera

coordinate

system

World

coordinate

system

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

RY

RX{ }R

RO

Step 3

dP

14

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 3: Lens Distortion)

dP

uP dr

CY

CX

Observed position

Ideal

projection

dr: radial distortion

a

b

Radial distortion effect (a: negative, b: positive)

Radial Distortion

15

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 3: Lens Distortion)

Axis with

maximum

radial

distortion

Axis with

minimum

tangential

distortion

CY

CX

Ideal

projection

Observed

position

dr: radial distortion

dt: tangential distortion

dPuP

dr

CY

CX

dt

Radial and Tangential Distortion

Image with distortionImage without distortion

16

Lecture 2: Camera Calibration

2.2 Pinhole Model (Step 4: Camera to Image)

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

IY

IXIO{ }I

RY

RX{ }R

RO

Image

coordinate

system

Step 4

dP

17

Lecture 2: Camera Calibration

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

dP

IY

IXIO{ }I

RY

RX { }R

RO

C

WK

Image

coordinate

system

Step 1

Step 2Step 3

Step 4

2.2 Pinhole Model

18

Lecture 2: Camera Calibration

2.2 Calibration Methods (I)

• Method of Hall– Lineal method

– Transformation matrix

• Method of Faugeras-Toscani– Lineal method

– Obtaining camera parameters

• Method of Faugeras-Toscani with distortion– Iterative method

– Radial distortion

• Method of Tsai– Iterative method

– Radial distortion

– Focal distance estimation

• Method of Weng– Iterative method

– Radial and tangential distortion

• … and many more

19

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

20

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

21

Lecture 2: Camera Calibration

2.3 The Method of Hall

• Method of Hall– Lineal method

– Transformation matrix

• Method of Faugeras-Toscani– Lineal method

– Obtaining camera parameters

• Method of Faugeras-Toscani with distortion– Iterative method

– Radial distortion

• Method of Tsai– Iterative method

– Radial distortion

– Focal distance estimation

• Method of Weng– Iterative method

– Radial and tangential distortion

• … and many more

22

Lecture 2: Camera Calibration

World

coordinate

system

WZ

WYWX

WO

wP

Image plane

{ }W

uP

IY

IXIO{ }IImage

coordinate

system

2.3 The Method of Hall - Modelling

23

Lecture 2: Camera Calibration

11 12 13 14

21 22 23 24

31 32 33 341

W

I w

u W

I w

u W

w

Xs X A A A A

Ys Y A A A A

Zs A A A A

Assume light is captured on the image plane by a linear projection

The matrix is defined up to a scale factor Multiple Solutions

A component is fixed to the unity Unique Solution

11 12 13 14

21 22 23 24

31 32 33 11

W

I w

u W

I w

u W

w

Xs X A A A A

Ys Y A A A A

Zs A A A

2.3 The Method of Hall - Modelling

24

Lecture 2: Camera Calibration

11 12 13 14

31 32 33

21 22 23 24

31 32 33

1

1

W W W

I w w w

u W W W

w w w

W W W

I w w w

u W W W

w w w

A X A Y A Z AX

A X A Y A Z

A X A Y A Z AY

A X A Y A Z

11 12 13 14

21 22 23 24

31 32 33 11

W

I w

u W

I w

u W

w

Xs X A A A A

Ys Y A A A A

Zs A A A

11 31 12 32 13 33 14

21 31 22 32 23 33 24

W I W W I W W I W I

w u w w u w w u w u

W I W W I W W I W I

w u w w u w w u w u

A X A X X A Y A X Y A Z A X Z A X

A X A Y X A Y A Y Y A Z A Y Z A Y

2.3 The Method of Hall - Calibration

25

Lecture 2: Camera Calibration

2 1

2

1 0 0 0 0

0 0 0 0 1

W W W I W I W I W

i w w w u w u w u wi i i i i i i i i

W W W I W I W I W

i w w w u w u w u wi i i i i i i i i

Q X Y Z X X X Y X Z

Q X Y Z Y X Y Y Y Z

2 1

2

I

i u i

I

i u i

B X

B Y

T

11 12 13 14 21 22 23 24 31 32 33A A A A A A A A A A A A

1

t tA Q Q Q B

QA B

Pseudoinverse leads to a unique solution:

1A Q B

Obtaining 11 unknowns and each 2D point gives two equations

So, at least 6 points are needed. More points leads to a more accurate solution.

11 31 12 32 13 33 14

21 31 22 32 23 33 24

W I W W I W W I W I

w u w w u w w u w u

W I W W I W W I W I

w u w w u w w u w u

A X A X X A Y A X Y A Z A X Z A X

A X A Y X A Y A Y Y A Z A Y Z A Y

2.3 The Method of Hall - Calibration

26

Lecture 2: Camera Calibration

Camera

coordinate

system

CY

CX CZ

CO{ }C

IY

IXIO{ }I

RY

RX

RO

{ }R

World

coordinate

system

WZ

WYWX

WO{ }W

Reconstruction

Area

Image of the calibrating pattern

2 1

2

1 0 0 0 0

0 0 0 0 1

W W W I W I W I W

i w w w u w u w u wi i i i i i i i i

W W W I W I W I W

i w w w u w u w u wi i i i i i i i i

Q X Y Z X X X Y X Z

Q X Y Z Y X Y Y Y Z

2 1

2

I

i u i

I

i u i

B X

B Y

1t t

A Q Q Q B

2.3 The Method of Hall - Calibration

27

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

28

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

29

Lecture 2: Camera Calibration

2.4 The Method of Faugeras-Toscani

• Method of Hall– Lineal method

– Transformation matrix

• Method of Faugeras-Toscani– Lineal method

– Obtaining camera parameters

• Method of Faugeras-Toscani with distortion– Iterative method

– Radial distortion

• Method of Tsai– Iterative method

– Radial distortion

– Focal distance estimation

• Method of Weng– Iterative method

– Radial and tangential distortion

• … and many more

30

Lecture 2: Camera Calibration

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

IY

IXIO{ }I

RY

RX { }R

RO

C

WK

Image

coordinate

system

Step 1

Step 2Step 3

Step 4

2.4 The Method of Faugeras-Toscani

31

Lecture 2: Camera Calibration

• Extrinsic parameters: Model the situation and orientation of the camera with

respect to a world co-ordinate system.

• Intrinsic parameters: Model the behaviour of the internal geometry and the optical

characteristics of the camera.

u

w

v

Yc

Xc

Zc

Oc

Oi

(u0, v0)

Pu

P

image

co-ordinate

system

(píxels)

retinal

co-ordinate

system

(mm.)

Image plane

Retinal plane

Yr

Xr

Zr

w

World

co-ordinate

system

WZ

WY

WX

WO { }W

Camera

co-ordinate system

2.4 The Method of Faugeras-Toscani

32

Lecture 2: Camera Calibration

Yc

Xc

Zc

Zw

YwOc

Ow

Pw

Camera

co-ordinate

system World

co-ordinate system

Retinal Plane

K

Xw

X

C

W Y

Z

t

T t

t

11 12 13

21 22 23

31 32 33

, , ,C

W

C

W

R Rot X Rot Y Rot Z

r r r

R r r r

r r r

C W

w w

C C W C

w W w W

C W

w w

X X

Y R Y T

Z Z

1 1

C W

Cw w

W

P PK

3 3 3 1

1 30 1

C C

C W Wx x

W

x

R TK

2.4 Extrinsic Parameters

33

Lecture 2: Camera Calibration

CPw

CPu

Yc

Xc

Zc

Oc C

f

PZc

Yu

PYc XuPXc

C

C w

u C

w

C

C w

u C

w

XX f

Z

YY f

Z

2.4 The Intrinsic Parameters: Ideal Projection

34

Lecture 2: Camera Calibration

pixel

Retinal

plane

(0, 0)

Yr

Xr (0, 0)

(Xd, Yd)

Image

Plane

(Xp, Yp)

R C

d u u

R C

d v u

X k X

Y k Y

2.4 The Intrinsic Parameters: Pixel Conversion

35

Lecture 2: Camera Calibration

Yr

Xr

V

U(0, 0)

Principal point

(u0,v0)

Computer image

co-ordinate

system

Camera

co-ordinate

system

0

0

I R

d d

I R

d d

X X u

Y Y v

2.4 The Intrinsic Parameters: Principal Point

36

Lecture 2: Camera Calibration

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

IY

IXIO{ }I

RY

RX { }R

RO

C

WK

Image

coordinate

system

Step 1

Step 2Step 3

Step 4

2.4 The Method of Faugeras-Toscani

37

Lecture 2: Camera Calibration

Real projection on the image plane (Xi, Yi)

(Xw, Yw, Zw) 3D object point with respect to world co-ordinate system

Affine transformation.

Modelled parameters: R, T

(Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system

Perspective transformation.

Modelled parameter: f

(Xu, Yu) Ideal projection on the retinal plane

Pixel adjustment

Modelled parameters: ku, kv

(Xp, Yp) Real projection on the image plane

Adaptation to the computer image buffer

Modelled parameters: u0, v0

2.4 The Method of Faugeras-Toscani

38

Lecture 2: Camera Calibration

C

C w

u C

w

C

C w

u C

w

XX f

Z

YY f

Z

R C

d u u

R C

d v u

X k X

Y k Y

0

0

I R

d d

I R

d d

X X u

Y Y v

0

0

C

I w

u u C

w

C

I w

u v C

w

XX k f u

Z

YY k f v

Z

0

0

0 0

0 0

0 0 1 01

C

I w

u u C

I w

u v C

w

Xs X u

Ys Y v

Zs

vv

uu

fk

fk

2.4 The Method of Faugeras-Toscani - Modelling

39

Lecture 2: Camera Calibration

11 12 13

0

21 22 23

0

31 32 33

0 0

0 0

0 0 1 00 0 0 1 1

W

xI w

u u W

yI w

u v W

z w

r r r t Xs X u

r r r t Ys Y v

r r r t Zs

1 0 3 0

2 0 3 0

3

u u x z

v v y z

z

r u r t u t

A r v r t v t

r t

Intrínsecs Extrínsecs

2.4 The Method of Faugeras-Toscani - Modelling

40

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

41

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

42

Lecture 2: Camera Calibration

11 12 13

0

21 22 23

0

31 32 33

0 0

0 0

0 0 1 00 0 0 1 1

W

xI w

u u W

yI w

u v W

z w

r r r t Xs X u

r r r t Ys Y v

r r r t Zs

1 0 3 0

2 0 3 0

3

u u x z

v v y z

z

r u r t u t

A r v r t v t

r t

Intrínsecs Extrínsecs

2.5 The Method of Faugeras-Toscani – Modelling

43

Lecture 2: Camera Calibration

1 14 3 34

2 24 3 34

0

0

W I W

w u w

W I W

w u w

A P A X A P A

A P A Y A P A

31 14

34 34 34

32 24

34 34 34

I W W I

u w w u

I W W I

u w w u

AA AX P P X

A A A

AA AY P P Y

A A A

1 1 2

3 2 2

I W W I

u w w u

I W W I

u w w u

X T P C T P X

Y T P C T P Y

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

2.5 The Method of Faugeras-Toscani – Calibration

1 0 3 0

2 0 3 0

3

u u x z

v v y z

z

r u r t u t

A r v r t v t

r t

343

242

141

AA

AA

AA

1343

242

141

w

W

u

I

u

I

P

AA

AA

AA

s

Ys

Xs

44

Lecture 2: Camera Calibration

1

2

3

1

2

T

T

X T

C

C

B QX

1 3

1 3

0 1 0

0 0 1

t tW I W

w u w xi i i

t tI W W

x u w wi i i

P X PQ

Y P P

I

u i

I

u i

XB

Y

1

t tX Q Q Q B

2.5 The Method of Faugeras-Toscani – Calibration

1 1 2

3 2 2

I W W I

u w w u

I W W I

u w w u

X T P C T P X

Y T P C T P Y

11 unknowns

minimum 6 points

45

Lecture 2: Camera Calibration

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

3 1r 2

1zt

T

2.5 The Method of Faugeras-Toscani – tz

𝑅 =

𝑟1𝑟2𝑟3

46

Lecture 2: Camera Calibration

1 2 1 2

1 2 1 2

cos

sin

v v v v

v v v v

0

1

1

0

t

i j

t

i j

i j

i j

r r i j

r r i j

r r i j

r r i j

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

2.5 The Method of Faugeras-Toscani – Intrinsics

02

33130

33310

32121

·· u

t

rr

t

r

t

ru

t

r

t

r

t

r

t

ru

t

rTTTT

z

u

zzzzz

u

zz

t

2

1zt

T

2

2

210

T

TTu

t

47

Lecture 2: Camera Calibration

1 2 1 2

1 2 1 2

cos

sin

v v v v

v v v v

0

1

1

0

t

i j

t

i j

i j

i j

r r i j

r r i j

r r i j

r r i j

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

2 31 2

0 02 2

2 2

1 2 2 3

2 2

2 2

tt

t t t t

u v

T TT Tu v

T T

T T T T

T T

2.5 The Method of Faugeras-Toscani – Intrinsics

48

Lecture 2: Camera Calibration

1 2 1 2

1 2 1 2

cos

sin

v v v v

v v v v

0

1

1

0

t

i j

t

i j

i j

i j

r r i j

r r i j

r r i j

r r i j

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

2.5 The Method of Faugeras-Toscani – Extrinsics

tt

t

tt

t

u

z

z

u

zz

TT

T

T

TTTTr

TTT

T

T

TTTTr

tu

t

rTr

t

ru

t

rT

21

2

2

2

21211

221

2

2

2

2

212110

311

10

31

1

49

Lecture 2: Camera Calibration

1 2 1 2

1 2 1 2

cos

sin

v v v v

v v v v

0

1

1

0

t

i j

t

i j

i j

i j

r r i j

r r i j

r r i j

r r i j

v

z

y

v

zz

z

u

z

xu

zz

t

tvC

t

rv

t

rT

t

rT

t

tuC

t

ru

t

rT

022

03

3

32

011

03

1

2 1 2

1 1 22

1 2 2

2 2 3

2 3 22

2 3 2

2

3

2

t

t t

t

t t

T T Tr T T

T T T

T T Tr T T

T T T

Tr

T

2 1 2

1 2

1 2 2

2 2 3

2 2

2 3 2

2

1

t

x t t

t

y t t

z

T T Tt C

T T T

T T Tt C

T T T

tT

2.5 The Method of Faugeras-Toscani – Extrinsics

50

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

51

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

52

Lecture 2: Camera Calibration

2.6 The Method of Faugeras-Toscani with distortion

• Method of Hall– Lineal method

– Transformation matrix

• Method of Faugeras-Toscani– Lineal method

– Obtaining camera parameters

• Method of Faugeras-Toscani with distortion– Iterative method

– Radial distortion

• Method of Tsai– Iterative method

– Radial distortion

– Focal distance estimation

• Method of Weng– Iterative method

– Radial and tangential distortion

• … and many more

53

Lecture 2: Camera Calibration

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

dP

IY

IXIO{ }I

RY

RX { }R

RO

C

WK

Image

coordinate

system

Step 1

Step 2Step 3

Step 5

Step 4

2.6 The Method of Faugeras-Toscani with distortion

54

Lecture 2: Camera Calibration

Ideal

projection

Observed

position

drdt

Xr

Yr

dr: radial distortion

dt: tangential distortion

PuPd

2.6 Lens Distortion

55

Lecture 2: Camera Calibration

a

b

Radial distorsion effect Tangential distorsion effect

Xr

Axe of a

maximum

tangential

distortion

Axe of a

minimum

tangential

distortion

Radial distorsion is the most important and usually the only considered in

calibration.

2.6 Lens Distortion

56

Lecture 2: Camera Calibration

X X Du d x Y Y Du d y

D X k rx d 1

2 D Y k ry d 1

2r X Yd d 2 2

2 4

1 2

2 4

1 2

2 2

C

x d

C

y d

C C

d d

D X k r k r

D Y k r k r

r X Y

k1 is the most important component

and usuallly sufficient in most

applications.

2.6 Lens Distortion

Model of Faugeras-Toscani with distortion:

57

Lecture 2: Camera Calibration

u

w

v

Yc

Xc

Zc

Oc

Oi

(u0, v0)

Pu

P

Camera

co-ordinate system

image

co-ordinate

system

f Pd

retinal

co-ordinate

system

Image plane

Retinal plane

Yr

Xr

Zr

X

f

P

P

u Xc

Zc

Y

f

P

P

u Yc

Zc

X X Du d x Y Y Du d y

D X k rx d 1

2 D Y k ry d 1

2r X Yd d 2 2

X k Xp u d Y k Yp v d

X X ui p 0 Y Y vi p 0

2.6 The Method of Faugeras-Toscani with distortion

58

Lecture 2: Camera Calibration

Camera

coordinate

system

World

coordinate

system

0 0,u v

fCY

CX CZ

CO

WZ

WYWX

WO

wP

Image plane

{ }W

{ }C

uP

dP

IY

IXIO{ }I

RY

RX { }R

RO

C

WK

Image

coordinate

system

Step 1

Step 2Step 3

Step 5

Step 4

2.6 The Method of Faugeras-Toscani with distortion

59

Lecture 2: Camera Calibration

(Xw, Yw, Zw) 3D object point with respect to world co-ordinate system

Affine transformation.

Modelled parameters: R, T

(Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system

Perspective transformation.

Modelled parameter: f

(Xu, Yu) Ideal projection on the retinal plane

Radial lens distortion.

Modelled parameter: k1

(Xd, Yd) Real projection on the retinal plane

Pixel adjustment

Modelled parameters: ku, kv

(Xp, Yp ) Real projection on the image plane

Adaptation to the computer image buffer

Modelled parameters: u0, v0

(Xi, Yi) Real projection on the image plane

2.6 The Method of Faugeras-Toscani with distortion

60

Lecture 2: Camera Calibration

2

1

2

1

C

C Cw

d dC

w

C

C Cw

d dC

w

Xf X k r X

Z

Yf Y k r Y

Z

0

0

I

dC

d

u

I

dC

d

v

X uX

k

Y vY

k

1 1

C W

w w

C W

Cw w

WC W

w w

X X

Y YK

Z Z

r X Yd d 2 2

The model is NON-LINEARIterative minimisation:

• Newton-Raphson

• Levenberg-Marquardt

2.6 The Method of Faugeras-Toscani with distortion

61

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

62

Lecture 2: Camera Calibration

Contents

2. Camera Calibration2.1 Calibration introduction

2.2 The pinhole model

2.3 The method of Hall

2.4 The method of Faugeras-Toscani – Modelling

2.5 The method of Faugeras-Toscani – Calibration

2.6 The method of Faugeras-Toscani with distortion

2.7 Experimental comparison of methods

63

Lecture 2: Camera Calibration

Hall Faugeras Faugeras distorted

Tsai Weng

Transformation

matrix

Step 3Lens

Distortion

Step 2Projection

Step 1World2camera

Transformation

with , , , tx, ty and tz

Projection with f

Radial distortion with k1

UndistortedMultiple

distortion

k1, g1, g2, g3, g4

Transformation with

u0, v0 , ku and kv

Transformation

with u0, v0 and sx Transformation

with u0, v0,

ku and kv

Step 4Camera2image

C C W C

w W w WP P T R

,

C C

C Cw w

u uC C

w w

X YX f Y f

Z Z

C C

w uP P

C C

u dP P

C I

d dP P

C C

u dP P

0

0

I C

d u d

I C

d v d

X k X u

Y k Y v

2 2

1

2 2

1

C C C C C

u d u u u

C C C C C

u d u u u

X X k X X Y

Y Y k Y X Y

1'

0

1

0

I C

d x x d

I C

d y d

X s d X u

Y d Y v

=

W C

w wP P

I W

d wP P A

2.7 Experimental Comparison - Methods

64

Lecture 2: Camera Calibration

wP

Optical Ray

3Dd

2.7 Experimental Comparison - Accuracy Evaluation

• 3D Measurement

– Distance with respect to the optical ray

– Normalized Stereo Calibration Error

• 2D Measurement

– Accuracy of distorted image coordinates

– Accuracy of undistorted image

coordinates

1 22 2

2 2 21

ˆ ˆ1

NSCEˆ 12

C C C Cn

w w w wi i i i

Ci w u vi

X X Y Y

n Z

Camera

coordinate

system

World

coordinate

system

fCY

CX

WZ

WX

WO

wP

Image plane

{ }W

uP

dP

IX{ }I

RX

{ }R

RO

Image

coordinate

system

ˆuP

ˆdP

0 0,u v

WYCZ

CO { }C

IY

IO

RY

uP

ˆuP

0 0,u v

dd

Observed Point

Linear Projection

- distortion

+ distortion

ud

ˆdP

dP

65

Lecture 2: Camera Calibration

2.7 Experimental Comparison: Synthetic Images (I)

2D distorted image (pix.) 2D undistorted image (pix.)

Mean Standard

desviation

Max Min Mean Standard

desviation

Max Min

1 Hall 0.2676 0.1979 1.2701 0.0213 0.2676 0.1979 1.2701 0.0213

2 Faugeras 0.2689 0.1997 1.2377 0.0075 0.2689 0.1997 1.2377 0.0075

3 Faugeras with distortion 0.0840 0.0458 0.2603 0.0081 0.0834 0.0454 0.2561 0.0080

4 Tsai 0.0838 0.0457 0.2426 0.0035 0.0832 0.0453 0.2386 0.0035

5 Weng 0.0845 0.0455 0.2608 0.0019 0.0843 0.0443 0.2584 0.0129

2D distorted

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5

pix

.

Mean Standard deviation

2D undistorted

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5p

ix.

Mean Standard deviation

66

Lecture 2: Camera Calibration

2.7 Experimental Comparison: Synthetic Images (II)

3D position (mm) NSCE

Mean Standard

desviation

Max Min

1 Hall 0.1615 0.1028 0.5634 0.0113 n/a

2 Faugeras 0.1811 0.1357 0.8707 0.0147 0.6555

3 Faugeras NR with distortion 0.0566 0.0307 0.1694 0.0055 0.2042

4 Tsai optimized 0.0565 0.0306 0.1578 0.0087 0.2037

5 Weng 0.0570 0.0305 0.1696 0.0088 0.2064

Normalized Stereo Calibration Error

Normalized Stereo Calibration Error

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5

NSCE

3D position

0

0,05

0,1

0,15

0,2

1 2 3 4 5

mm

.

Mean Standard deviation

67

Lecture 2: Camera Calibration

Computing Time

160 punts 1800 punts

• Hall 1 ms 70 ms

• Faugeras 1 ms 70 ms

• Faugeras with distortion 10 ms 380 ms

• Tsai 10 ms 530 ms

• Weng 51 ms 4216 ms

Pentium III at 1 GHz.

2.7 Experimental Comparison: Synthetic Images (III)

68

Lecture 2: Camera Calibration

2.7 Experimental Comparison: Real Images (I)

Camera

coordinate

system

CY

CX CZ

CO{ }C

IY

IXIO{ }I

RY

RX

RO

{ }R

World

coordinate

system

WZ

WYWX

WO{ }W

Reconstruction

Area

Image of the calibrating pattern

3D position (mm) NSCE

Mean Standard

desviation

Max Min

Hall 0.5219 0.2595 1.1370 0.0143 n/a

Faugeras 0.7782 0.4253 2.0210 0.0187 4.0649

Faugeras with distortion 0.4967 0.3367 1.5642 0.0094 2.5489

Tsai 0.4815 0.3023 1.4014 0.0093 2.4836

Weng 0.4740 0.2904 1.2669 0.0087 2.4556

69

Lecture 2: Camera Calibration

2.7 Experimental Comparison: Real Images (II)

3D position (mm) NSCE

Mean Standard

desviation

Max Min

Hall 1.5698 0.9842 8.9249 0.0247 n/a

Faugeras 1.6187 0.9856 8.8812 0.0302 2.0175

Faugeras with distortion 0.9930 0.5660 3.2386 0.0154 0.9909

Tsai 0.9927 0.5655 3.2311 0.0153 0.9908

Weng 0.9896 0.5724 3.3526 0.0149 0.9869

Image of the calibration patternStereo camera over a mobile robot

70

Lecture 2: Camera Calibration

2.7 Experimental Comparison - Conclusions

• Implementation of 5 of the most used camera calibration

methods

– Notation was unified

– The methods were compared in terms of model and

calibration

• The accuracy of non-linear methods is better than linear

methods

• Modelling of radial distortion is quite sufficient when high

accuracy is required

• Accuracy measuring methods obtain similar results if they are

relatively compared

Additional bibliography:

J. Salvi, X. Armangué and J. Batlle. A Comparative Review of Camera Calibrating Methods with Accuracy Evaluation. Pattern Recognition, PR, pp. 1617-1635, Vol. 35, Issue 7, July 2002.

top related