learning with matrix factorizations - pdfs.semanticscholar.org filelearning with matrix...

Post on 04-Apr-2019

252 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Learning with Matrix Factorizations

Nati SrebroDepartment of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Adviser: Tommi Jaakkola (MIT)Committee: Alan Willsky (MIT), Tali Tishby (HUJI), Josh Tenenbaum (MIT)

Joint work with Shie Mannor (McGill), Noga Alon (TAU) and Jason Rennie (MIT)

Lots of help from John Barnett, Karen Livescu, Adi Shraibman, Michael Collins,Erik Demaine, Michel Goemans, David Karger and Dmitry Panchenko

Dimensionality Reduction:Low dimensional representation capturing important aspects of high dimensional data

observations small representation yy u

image varying aspects of scenegene expression levels description of biological process

a user’s preferences characterization of userdocument topics

• Compression (mostly to reduce processing time)• Reconstructing latent signal

– biological processes through gene expression• Capturing structure in a corpus

– documents, images, etc• Prediction: collaborative filtering

Linear Dimensionality Reduction× v1u1yy×+ v2u2

+ × v3u3

Linear Dimensionality Reductiontitles

yy u1 v1

titles× comic value

u2 v2×+u3

+1

+2

-1

dramatic value

preferences of a specific user(real-valued preference level

for each title)

+ violence× v3

characteristics of the user

Linear Dimensionality Reductiontitles

V’titles

×yy u

Linear Dimensionality Reductionyy u V’YY

datadata U

titles

user

s

titles

×

Matrix Factorization

V’YYdatadata U X

rank k

×=≈

• Non-Negativity [LeeSeung99]

• Stochasticity (convexity) [LeeSeung97][Barnett04]

• Sparsity– Clustering as an extreme (when rows of U sparse)

• Unconstrained: Low Rank Approximation

Matrix Factorization

V’YYdatadata U Z

i.i.d.Gaussian

×= +

• Additive Gaussian noise minimize |Y-UV’|Fro

( ) ∑ ∑ +−== −

ij ijijijijij constUVYUVYPYUVL 2

21 )'()'|(log;'log 2σ

Matrix Factorization

V’YYdatadata U Z

i.i.d.p(Zij)

×= +

• Additive Gaussian noise minimize |Y-UV’|Fro

• General additive noise minimize ∑ -log p(Yij-UV’ij)

Matrix Factorization

• Additive Gaussian noise minimize |Y-UV’|Fro

• General additive noise minimize ∑ -log p(Yij-UV’ij)• General conditional models minimize ∑ -log p(Yij|UV’ij)

– Multiplicative noise– Binary observations: Logistic LRA– Exponential PCA [Collins+01]

– Multinomial (pLSA [Hofman01])• Other loss functions [Gordon02] minimize ∑loss(UV’ij;Yij)

V’YYdatadata U

×

p(Yij|UV’ij)

The Aspect Model (pLSA)

YYcoco--occurrenceoccurrence

countscounts

I

Jword

J

I

T

topic 1..k

p(j|t)

p(i,t)

[Hoffman+99]

Xp(i,j)rank k

×=

document

Y|X ∼ Multinomial(N,X)

Yij|Xij ∼ Binomial(N,Xij)

N=∑ Yij

Logistic Low Rank Approximation

[Schein+03]

Yij|Xij~Bin(N,g(Xij))Sufficient Dimensionality Reduction[Globerson+02]

Natural parameterizationunconstrained Xij

P(Yij=1) = XijYij|Xij~Bin(N,Xij)Aspect Model (pLSA) [Hoffman+99]

Mean parameterization0 · Xij · 1E[Yij|Xij]=Xij

Independent Bernoulli

Independent Binomials

Multinomial

≡ NMF if ∑Xij=1 ≈ NMF [Lee+01]

hingeloss

Low-Rank Models for Matrices of Counts, Occurrences or Frequencies

p(Yij|Xij) ∝ exp(YijXij+F(Yij))Exponential PCA: [Collins+01]

g(x)=1/(1+ex)

Outline• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank ApproximationWhen more data is available, do we converge to correct

solution? Not always…

• Matrix Factorization for Collaborative Filtering– Maximum Margin Matrix Factorization– Generalization Error Bounds (Low Rank & MMMF)

Finding Low Rank ApproximationFind rank-k X minimizing ∑loss(Xij;Yij) (=log p(Y|X))

• Non-convex:– “X is rank-k” is a non-convex constraint– ∑loss((UV)ij;Yij) not convex in U,V

• rank-k X minimizing ∑(Yij-Xij)2:– non-convex, but no (non-global) local minima– solution: leading components of SVD

• For other loss functions, or with missing data:cannot use SVD, local minima, difficult problem

• Weighted Low Rank Approximation:minimize ∑Wij(Yij-Xij)2

Arbitrarily specified weights(part of input)

WLRA: Optimization∑ −=

ijijij UVYWUVJ 2)'()'(

For fixed V, find optimal UFor fixed U, find optimal V

)'(min)(* UVJVJU

=

))'*((*'2)'(* WYVUUVJV ⊗−=∂∂

Conjugate gradient descent on J*Optimize km parameters instead of k(n+m)

V’U

×k m

k

n

X←LowRankApprox(W⊗Y+(1-W)⊗X)

elementwiseproductEM approach:

Newton Optimization forNon-Quadratic Loss Functions

minimize ∑ijloss(Xij;Yij)loss(Xij;Yij) convex in Xij

• Iteratively optimize quadratic approximations of objective

• Each such quadratic optimization is a weighted low rank approximation

Maximum Likelihood Estimation with Gaussian Mixture Noise

YYobservedobserved

Xrank k

Znoise

C(hidden)

= +

Mixture of Gaussians:{pc,µc,σc}

E step: calculate posteriors of CM step: WLRA with

∑=

=c C

ijij

cCW 2

)Pr(σ ij

c C

Cijijij WcCYA ∑

=+= 2

)Pr(σ

µ

Outline• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank ApproximationWhen more data is available, do we converge to correct

solution? Not always…

• Matrix Factorization for Collaborative Filtering– Maximum Margin Matrix Factorization– Generalization Error Bounds (Low Rank & MMMF)

Asymptotic Behavior ofLow Rank Approximation

YY ZXparameters

rank k

random

independent= +

Single observation,Number of parameters is linear in number of observables

Can never approach correct estimation of parameters

What can be estimated is row-space of X

YY Zrandom

independentU

V= +

Number of parameters is linear in number of observables

What can be estimated is row-space of X

U

random

YY Zrandom

independent

V= +

What can be estimated is row-space of X

What can be estimated is row-space of X

Multiple samples of random variable y

uyy z= +

Probabilistic PCA

V×uyy z

Gaussian

~= +Gaussian

~

σ2IΣXrank k

xGaussian

~estimated

parametersestimated

parameters

Maximum likelihood ≡ PCA[Tipping Bishop 97]

Probabilistic PCA

V×uyy z= +Gaussian(σ2I)

~

Gaussian

~

estimated parametersestimated

parameters

V×uyy ~ ~Multinomial( N, )

Latent Dirichlet Allocation[Blei Ng Jordan 03]

[Tipping Bishop 97]

Dirichlet(α)

estimated parametersestimated

parameters

Generative and Non-GenerativeLow Rank Models

Y=X+Gaussian “Probabilistic PCA”

pLSA,Y~Binom(N,X) Latent Dirichlet Allocatoin

Parametric generative models:Consistency of Maximum Likelihood

estimation guaranteedif model assumptions hold

(both on Y|X and on U)

Non-parametricgenerative models

estimated parametersrow-space of V,not entries of V

V×uyy z

Gaussian

~= +

xPU

nonparametric,unconstrained

nuisance

Non-parametric model,estimation of a parametric part of the modelMaximum Likelihood ≡ “Single Observed Y”

Consistency of ML Estimationtrue V

estimated V

Consistency of ML Estimation

[ ]))((logmax);( uVzxpExV Zuz −+=Ψ

ML estimator is consistentfor any Pu

);( xVΨfor all x,

V maximizes iff V spans x

xexpected

contribution of x to likelihood of V

When Z~Gaussian, =Ψ );( xV E[L2 distance of x+z from V]

V

For iid Gaussian noise, ML estimation (PCA) of the low-rank sub-space is consistent

Consistency of ML Estimation

[ ]))((logmax);( uVzxpExV Zuz −+=Ψ

V

expected contribution of x to

likelihood of Vx=0

);( xVΨfor all x,

V maximizes iff V spans x

ML estimator is consistentfor any Pu

is constant for all V)0;(VΨML estimator is consistent

for any Pu

Consistency of ML Estimation

[ ]))((logmax);( uVzxpExV Zuz −+=Ψ

V

expected contribution of x to

likelihood of V

θx=0

|][|21])[( iz

Z eizp −=Laplace:

1

1.5

=Ψ− )0;(V

θ= π2π

vertical axis

horizontal axishorizontal axis

Consistency of ML Estimation

expected contribution of x to

likelihood of V

X=UV’General conditional model for Y|X

[ ]xuVYpExV XYuXY |)|(logmax);( ||=Ψ

);( xVΨfor all x,

V maximizes iff V spans x

ML estimator is consistentfor any Pu

is constant for all V)0;(VΨML estimator is consistent

for any Pu

Consistency of ML Estimation

expected contribution of x to

likelihood of V

V

x=0

][| 11])[|1][( ixXY e

ixiYp −−==

θ

Logistic:[ ]xuVYpExV XYuXY |)|(logmax);( ||=Ψ

=Ψ− )0;(V

θ= π2

π

Consistent Estimation• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistentPCA is consistent (for any noise distribution)

ΣX + σ2IΣYSpan of k leading eigenvectors of

rank k

Consistent Estimation• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistentPCA is consistent (for any noise distribution)

ΣY = ΣX + ΣZ = ΣX + σ2IΣY

s1, s2, …, sk, 0, 0, …, 0

s1+σ2, s2+σ 2, …, sk+σ2, σ2, σ2, …, σ2

Consistent Estimation• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistentPCA is consistent (for any noise distribution)

10 100 1000 100000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample size (number of observed rows)

MLPCA

dist

ance

to c

orre

ct s

ubsp

ace

Noise:0.99 N(0,1) + 0.01 N(0,100)

Consistent Estimation• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistentPCA is consistent (for any noise distribution)

• Unbiased noise E[Y|X]=X:Maximum Likelihood generally not consistentPCA not consistent

-- Can correct by ignoring diagonal of covariance

• Exponential PCA (X are natural parameters)Maximum Likelihood generally not consistentCovariance methods not consistent??????

Outline• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank ApproximationWhen more data is available, do we converge to correct

solution? Not always…

• Matrix Factorization for Collaborative Filtering– Maximum Margin Matrix Factorization– Generalization Error Bounds (Low Rank & MMMF)

Collaborative FilteringBased on preferences so far, and preferences of others:⇒ Predict further preferences

movies Implicit or explicit preferences?

Type of queries.

2 1 4 5

4 1 3 5

5 4 1 33 5 2

4 5 3

2 1 41 5 5 4

2 5 43 3 1 5 2 13 1 2 34 5 1 3

3 3 52 1 1

5 2 4 41 3 1 5 4 5

1 2 4 5

user

s

Matrix CompletionBased on partially observed matrix:

⇒ Predict unobserved entries “Will user i like movie j?”movies

2 1 4 5

4 1 3 5

5 4 1 33 5 2

4 5 3

2 1 41 5 5 4

2 5 43 3 1 5 2 13 1 2 34 5 1 3

3 3 52 1 1

5 2 4 41 3 1 5 4 5

1 2 4 5

?

? ?

?

? ?

??

?

?

user

s

Matrix Completion withMatrix Factorization

Fit factorizable (low-rank) matrix X=UV’to observed entries.

minimize Σloss(Xij;Yij)

Use matrix X to predict unobserved entries.

V’2 1 4 5

4 1 3 5

5 4 1 33 5 2

4 5 3

2 1 41 5 5 4

2 5 43 3 1 5 2 13 1 2 34 5 1 3

3 3 52 1 1

5 2 4 41 3 1 5 4 5

1 2 4 5

?

? ?

?

? ?

??

?

?

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

Uobservationprediction

[Sarwar+00] [Azar+01] [Hoffman04] [Marlin+04]

Matrix Completion withMatrix Factorization

When U is fixed,each row is a linear classification problem:•rows of U are feature vectors•columns of V are linear classifiers

Fitting U and V:Learning features that work well across all

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1v1 v2 v3 v4 v5 v6 v7 v8 v9 v10v11v12

U

-1.51.3 0.4

-4.88.3 2.5

3.40.7 -0.2

1.61.7 -5.2

0.9-3.7 2.1

2.74.3 -0.5

6.44.7 0.2

-5.86.0 0.3

-1.5

-4.8

3.4

1.6

0.9

2.7

6.4

-5.8

0.4

2.5

-0.2

-5.2

2.1

-0.5

0.2

0.3

1.3

8.3

0.7

1.7

-3.7

4.3

4.7

6.0

classification problems.

Max-Margin Matrix Factorization

Instead of bounding dimensionality of U,V, bound norms of U,V

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:Yij Xij ≥ Margin

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:Yij Xij ≥ Margin

(maxi|Ui|2) (maxj|Vj|2) · 1

(∑i |Ui|2) (∑j |Vj|2) · 1

Max-Margin Matrix Factorization

U is fixed:each column of V is SVM

bound norms on average:

bound norms uniformly:

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:Yij Xij ≥ Margin

(maxi|Ui|2) (maxj|Vj|2) · 1

(∑i |Ui|2) (∑j |Vj|2) · 1

Max-Margin Matrix Factorization

U is fixed:each column of V is SVM

bound norms on average:

bound norms uniformly:

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

Geometric Interpretationcolumns of V

(items)rows of U

(users)

(maxi|Ui|2) (maxj|Vj|2) · 1

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

Geometric Interpretationcolumns of V

(items)rows of U

(users)

(maxi|Ui|2) (maxj|Vj|2) · 1

Finding Max-Margin Matrix Factorizations

(maxi|Ui|2) (maxj|Vj|2) · 1(∑i |Ui|2) (∑j |Vj|2) · 1X=UVX=UV

maximize Mmaximize MYij Xij ≥ MYij Xij ≥ M

Unlike rank(X) · k, these are convex constraints!

Finding Max-Margin Matrix Factorizations

X-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

Y-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

QQmaximize MYij Xij ≥ M

X=UV(∑i |Ui|2) (∑j |Vj|2) · 1

|X|tr = ∑ (singular values of X)

Dual variable Qij for each observed (i,j)

maximize ∑ Qij

BX’XA p.s.d.

minimize tr(A)+tr(B)Yij Xij ≥ 1

+ c ∑ξij

- ξij 0 · Qij · c

||Q ⊗ Y||2 · 1

sparse elementwise product (zero for unobserved entries)

Finding Max-Margin Matrix Factorizations

• Semi-definite program with sparse dual:Limited by number of observations, not size

(for both average-norm and max-norm)

• Current implementation: use CSDP (off-the-shelf solver), up to 30k observations (e.g. 1000x1000, 3% observed)

• For large-scale problems: updates on dual alone ?Dual variable Qij for each observed (i,j)

maximize ∑ Qij

BX’XA p.s.d.

minimize tr(A)+tr(B)Yij Xij ≥ 1

+ c ∑ξij

- ξij 0 · Qij · c

||Q ⊗ Y||2 · 1

sparse elementwise product (zero for unobserved entries)

Loss Functions for Rankings

Xij

0Yij=+1

loss

(Xij;Y

ij)

Loss Functions for Rankings

Xij

θ1 θ2 θ6θ5θ4θ3

765421 3Yij =

loss

(Xij;Y

ij)

Loss Functions for Rankings

XijYij=3θ1 θ2 θ6θ5θ4θ3

Immediate-threshold loss

loss

(Xij;Y

ij)

[Shashua Levin 03]

all-threshold loss

• All-threshold loss is a bound on the absolute rank-difference• For both loss functions: learn per-user θ’s

Experimental Results on MovieLens Subset

all threshold

MMMF

immediate threshold

MMMF

K-medians K=2 Rank-1 Rank-2

Rank Difference 0.670 0.715 0.674 0.698 0.714

Zero One Error 0.553 0.542 0.558 0.559 0.553

100 users × 100 movies subset of MovieLens,3515 training ratings, 3515 test ratings

Outline• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank ApproximationWhen more data is available, do we converge to correct

solution? Not always…

• Matrix Factorization for Collaborative Filtering– Maximum Margin Matrix Factorization– Generalization Error Bounds (Low Rank & MMMF)

Generalization Error Bounds

D(X;Y) = ∑ij loss(Xij;Yij)/nmgeneralization error

Assuming a low-rank structure (eigengap):Asymptotic behavior [Azar+01]

Sample complexity, query strategy [Drineas+02]

X

-1 -1 +1 +1

+1 -1 -1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

Yunknown,

assumption-free

Generalization Error Bounds

D(X;Y) = ∑ij loss(Xij;Yij)/nmgeneralization error

DS(X;Y) = ∑ij∈S loss(Xij;Yij)/|S|empirical error

-1 -1 +1 +1

+1 -1 -1 +1

+1 +1 -1 -1-1 +1 +1

+1 +1 -1

-1 -1 +1-1 +1 +1 +1

-1 +1 +1+1 +1 -1 +1 -1 -1+1 -1 -1 +1+1 +1-1 +1

-1 -1 +1-1 -1 -1

+1 -1 +1 +1-1 -1 -1+1 +1 +1

-1 -1 +1 +1

X YSS

random

unknown, assumption-free

∀Y PrS ( ∀rank-k X D(X;Y)<DS(X;Y)+ε ) > 1-δ

training set

source distribution

hypothesis

Generalization Error Bounds0/1 loss: loss(Xij;Yij) = 1 when sign(Xij)≠Yij

D(X;Y) = ∑ij loss(Xij;Yij)/nmgeneralization error

DS(X,Y) = ∑ij∈S loss(Xij;Yij)/|S|empirical error

loss(Xij;Yij) ∼ Bernoulli(D(X;Y))For particular X,Y:

Pr( DS(X;Y) < D(X;Y)-ε ) < e-2|S|ε2randomrandom

randomUnion bound over all possible Xs:

∀Y PrS ( ∀X D(X,Y)<DS(X,Y)+ε ) > 1-δ

||2loglog)( 18

Smnk k

emδε

++=

log(# of possible Xs)

Number of Sign Configurations of Rank-k Matrices

-0.36 -0.00 -0.98 -1.36 -0.26-0.07 -0.24 -1.14 -0.82 -0.120.19 -0.44 -1.27 -0.34 0.01-0.81 0.84 1.17 -1.07 -0.35-0.48 0.21 -0.43 -1.28 -0.28-0.35 0.13 -0.43 -1.02 -0.22-0.54 0.68 1.26 -0.43 -0.20-0.22 0.40 0.98 0.10 -0.051.13 -1.06 -1.21 1.72 0.511.30 -0.73 0.55 3.12 0.720.53 -0.45 -0.40 0.90 0.25-0.04 -0.00 -0.14 -0.17 -0.03-0.80 0.70 0.67 -1.32 -0.37-1.81 1.28 0.28 -3.73 -0.930.68 -0.56 -0.43 1.21 0.33

-0.46 0.65-0.20 0.700.02 0.74-0.61 -0.59-0.50 0.33-0.38 0.31-0.35 -0.69-0.09 -0.560.90 0.571.27 -0.520.44 0.17-0.06 0.09-0.66 -0.29-1.65 0.090.58 0.16

1.11 -0.81 -0.27 2.24 0.570.22 -0.58 -1.70 -0.52 0.00

{ x | ∀i Pi(xWarren (1968): The number of connected components of ) ≠ 0 }

Xi,j = ∑r Ui,r Vr,j

nk variables mk variables

nm polynomials of degree 2

polynomials

X

V

U

4 e (degree) (#polys)

(# variables)

(# variables)is at most1

2 34

567

8

P1(x1,x2)=0

P2(x1,x2)=0

P3(x1,x2)=0Based on [Alon95]

Number of Sign Configurations of Rank-k Matrices

-0.36 -0.00 -0.98 -1.36 -0.26-0.07 -0.24 -1.14 -0.82 -0.120.19 -0.44 -1.27 -0.34 0.01-0.81 0.84 1.17 -1.07 -0.35-0.48 0.21 -0.43 -1.28 -0.28-0.35 0.13 -0.43 -1.02 -0.22-0.54 0.68 1.26 -0.43 -0.20-0.22 0.40 0.98 0.10 -0.051.13 -1.06 -1.21 1.72 0.511.30 -0.73 0.55 3.12 0.720.53 -0.45 -0.40 0.90 0.25-0.04 -0.00 -0.14 -0.17 -0.03-0.80 0.70 0.67 -1.32 -0.37-1.81 1.28 0.28 -3.73 -0.930.68 -0.56 -0.43 1.21 0.33

-0.46 0.65-0.20 0.700.02 0.74-0.61 -0.59-0.50 0.33-0.38 0.31-0.35 -0.69-0.09 -0.560.90 0.571.27 -0.520.44 0.17-0.06 0.09-0.66 -0.29-1.65 0.090.58 0.16

1.11 -0.81 -0.27 2.24 0.570.22 -0.58 -1.70 -0.52 0.00

{ x | ∀i Pi(xWarren (1968): The number of connected components of ) ≠ 0 }

Xi,j = ∑r Ui,r Vr,j

nk variables mk variables

nm polynomials of degree 2

polynomials

X

V

U

4 e (degree) (#polys)

(# variables)

(# variables)

12 3

456

7

8

P1(x1,x2)=0

P2(x1,x2)=0

P3(x1,x2)=0

2 nmk(n+m)

k(n+m)

is at most

Based on [Alon95]

Generalization Error Bounds:Low Rank Matrix Factorization

D(X;Y) = ∑ij loss(Xij;Yij)/nmgeneralization error

DS(X,Y) = ∑ij∈S loss(Xij;Yij)/|S|empirical error

∀Y PrS ( ∀X of rank-k D(X,Y)<DS(X,Y)+ε ) > 1-δ

||2loglog)( 18

Smnk k

emδε

++=0/1 loss: loss(Xij;Yij) = sign(XijYij)

||logloglog)(

61

)(8

Smnk mnk

Skem

δε++

= +loss(Xij;Yij) · 1:(by bounding the psudodimension)

Generalization Error Bounds:Large Margin Matrix Factorization

D(X;Y) = ∑ij loss(Xij;Yij)/nmgeneralization error

loss(Xij;Yij) = sign(XijYij) l

DS(X;Y) = ∑ij∈S loss1(Xij;Yij)/|S|empirical error

oss1(Xij;Yij) = sign(XijYij-1)

∀Y PrS ( ∀X D(X,Y)<DS(X,Y)+ε ) > 1-δ

||loglog)(ln

124

SnmnRmK δε ++

=

universal constant from [Seginer00]bound on spectral norm of random matrix

(∑ |Ui|2/n)(∑ |Vi|2/m) · R2:

||log)(12

12

SmnR δε ++

=(max |Ui|2)(max |Vj|2) · R2:

Maximum Margin Matrix Factorizationas a Convex Combination of Classifiers

{ UV | (∑ |Ui|2)(∑ |Vi|2) · 1 }= convex-hull( { uv’ | u ∈ Rn, v ∈ Rm |u|=|v|=1} )

conv( { uv’ | u ∈ ±1n, v ∈ ±1m} ) ⊂ { UV | (max |Ui|2)(max |Vj|2) · 1 }

⊂ 2 conv( { uv’ | u ∈ ±1n, v ∈ ±1m} )

Grothendiek's Inequality

Summary• Finding Low Rank Approximations

– Weighted Low Rank Approximations– Basis for other loss function: Newton, Gaussian mixtures

• Consistency of Low Rank Approximation– ML for popular low-rank models is not consistent!– PCA consistent for additive noise; diagonal ignoring for unbiased– Efficient estimators?– Consistent estimators for Exponential-PCA?

• Maximum Margin Matrix Factorization– Correspondence with large margin linear classification– Sparse SDPs for both avarage-norm and max-norm formulations– Direct optimization of dual would enable large-scale applications

• Generalization Error Bounds for Collaborative Prediction– First “assumption free” bounds for matrix completion– Both for Low-Rank and for Max-Margin– Observation process?

Average February Temperature(centigrade)

Tel-Aviv TorontoBostonHaifa(Technion)

????

-20

-10

0

10

20

30

top related