lamb waves for composite health monitoring non-destructive testing – laurens stevaert 2ma chemical...

Post on 29-Mar-2015

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Lamb Waves for Composite Health MonitoringNon-Destructive Testing – Laurens Stevaert2Ma Chemical & Materials Engineering – VUB/ULB 2012-’13

1

COMPOSITESProperties, (Dis)Advantages & Inspection

2

Composites: Properties• Widely used• Aerospace• Automotive• Naval

• Advantages• High specific strength• Light weight• Fatigue and corrosion resistance• Design freedom – tailored properties

3

Composites: Properties• Disadvantage: impact damage• Low through-thickness strength• Even low velocity!• Bird strike• Tool dropped during servicing• Runway stones

• Damage• Indentation• Delamination• Fibre/matrix cracking• “Barely Visible Impact Damage”

Detect, locate & characterize damage!4

Composites: N-D Inspection• Loads of methods• Visual inspection• Optical methods• Eddy current (E-M waves)• Thermography (input heat energy)• Ultrasonic (high E acoustic waves)• Etc.

• But…• Cost & time• Bulky transducers• Part has to be removed, sometimes placed under water• Point scan 5

LAMB WAVESProperties & Application

6

Guided Wave Testing

High detection range 100m

wikipedia.org

• Mechanical stress waves• Guided by geometry• Super low freq. (10-100 kHz)

• Other advantages:• Elastic waves: reversible deform. mech. properties• Through thickness scanning• Imaging internal hidden defects

7

Lamb Waves: Properties• Discovered in 1916 but only recently applied• Complex mathematics• Need for computational power

• Elastic wave in solid plates• plate plane• propagation direction• (Guided by geometry, travel long distances)

• Infinite number of modes, only two used• Symmetrical S0

• Asymmetrical A0

8

Lamb Waves: Testing• Normally: transducers on the outside• Good coupling required!• Contact mode• Air is not a good medium• Immersion in water part has to be removed…• Water jets very sensitive…

• Non-contact mode• Easier option for testing• Often expensive

9

Lamb Waves: Smart Systems• Small transducers permanently attached• To the surface• Embedded in composite laminate• Constantly monitor the structure, on demand info

• Piezoelectric Wafer Transducers• Transmitter: electrical E mechanical E (elastic waves)• Receiver: mechanical E (propagated wave) electrical E• E.g.: PZT – Lead Zirconate Titanate

10

eetimes.com

• Different ways to analyze signal – depends on application• Examples• TOF measurement: defect location

• Defect material with different prop.• Wave: different velocity (slower)• Comparison of wave peak locations

• Laser vibrometer: defect location• Non-contact vibration measurement: Doppler shift of laser frequency

due to surface vibration• 3D lamb wave, follow peak-to-peak amplitudes

• Finite element-based technique: defect size• Measure reflection and transmission coefficients• Predict these coefficients for set of damage parameters• Parameter optimization defect geometry

Lamb Waves: Analysis

11

FUTURE WORKWeak points & Improvements

12

Future Work• Some disadvantages• Single mode: dispersion properties needed difficult for

composites!• Low frequency = large wavelengths small defects not correctly

measured• Analysis over long time influenced by T, loading, bad coupling…• Anisotropy

13

Commercial applications limited… for now

Conclusion• Lamb waves• Special properties• Propagate through plate geometries• Detection over large distances

• Smart systems• Active structural health monitoring• Monitor damage (evolution)• While in-service!

14

Promising technique!

QUESTIONS?“Lamb” Wave – Vague de “Agneau”?

15

Sources• Diamanti, K. et al (2010) Structural Health Monitoring

Techniques for Aircraft Composite Structures. Progress in Aerospace Sciences, Vol 46, pp. 342 – 352

• Staszewski, W.J. et al (2008) Health Monitoring of Aerospace Composite Structures – Active and Passive Approach. Composites Science and Technology, Vol 69, pp. 1678 – 1685

• Castaings, M. et al (2011) Sizing of Impact Damages in Composite Materials Using Ultrasonic Guided Waves. NDT&E International, Vol 46, pp. 22 – 31

16

top related