kriging · 2007-07-07 · effect of estimated covariance structure the usual geostatistical method...

Post on 15-Apr-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1.2 Kriging

Research goals inair quality research

Calculate air pollution fields for healtheffect studiesAssess deterministic air quality modelsagainst dataInterpret and set air quality standardsImproved understanding ofcomplicated systemsPrediction of air quality

The geostatistical model

Gaussian processµ(s)=EZ(s) Var Z(s) < ∞

Z is strictly stationary if

Z is weakly stationary if

Z is isotropic if weakly stationary and

Z(s),s !D " R2

(Z(s1),...,Z(sk )) =d

(Z(s1 +h),...,Z(sk +h))

µ(s) ! µ Cov(Z(s1),Z(s2 )) = C(s1 " s2)

C(s1 ! s2) = C0( s1 ! s2 )

The problem

Given observations at n locationsZ(s1),...,Z(sn)estimate

Z(s0) (the process at an unobserved site)

(an average of the process)

In the environmental context often timeseries of observations at the locations.

Z(s)d!(s)A

"or

Some history

Regression (Galton, Bartlett)Mining engineers (Krige 1951,Matheron, 60s)Spatial models (Whittle, 1954)Forestry (Matérn, 1960)Objective analysis (Grandin, 1961)More recent work Cressie (1993), Stein(1999)

A Gaussian formula

If

then

X

Y

!

" #

$

% & ~ N

µX

µY

!

" #

$

% & ,

'XX 'XY'YX 'YY

!

" #

$

% &

!

" #

$

% &

(Y |X) ~ N(µY + !YX!XX"1(X"µX ),

!YY " !YX!XX"1

!XY )

Simple krigingLet X = (Z(s1),...,Z(sn))T, Y = Z(s0), so that

µX=µ1n, µY=µ,ΣXX=[C(si-sj)], ΣYY=C(0), and

ΣYX=[C(si-s0)].

Then

This is the best unbiased linear predictorwhen µ and C are known (simple kriging).

The prediction variance is

p(X) ! Z(s0 ) = µ + C(si " s0 )[ ]TC(si " sj )#$ %&

"1

X " µ1n( )

m1 = C(0) ! C(si ! s0 )[ ]TC(si ! sj )"# $%

!1

C(si ! s0 )[ ]

Some variants

Ordinary kriging (unknown µ)

where

Universal kriging (µ (s)=A(s)β for some spatialvariable A)

Still optimal for known C.

p(X) ! Z(s0 ) = µ + C(si " s0 )[ ]TC(si " sj )#$ %&

"1

X " µ1n( )

µ = 1nT C(si ! sj )"# $%

!1

1n( )!1

1nT C(si ! sj )"# $%

!1

X

! = ( A(si )[ ]TC(si " sj )#$ %&

"1A(si )[ ])"1

A(si )[ ]TC(si " sj )#$ %&

"1X

Universal kriging variance

E Z(s0 ) ! Z(s0 )( )2

= m1 +

A(s0 ) ! [A(si )T[C(si ! sj )]

!1[C(si ! s0 )]( )T

"( A(si )[ ]TC(si ! sj )#$ %&

!1

A(si )[ ])!1

" A(s0 ) ! [A(si )T[C(si ! sj )]

!1[C(si ! s0 )]( )

simple kriging variance

variability due to estimating β

The (semi)variogram

Intrinsic stationarityWeaker assumption (C(0) needs notexist)Kriging predictions can be expressed interms of the variogram instead of thecovariance.

! ( h ) =1

2Var(Z(s + h) " Z(s)) = C(0) " C( h )

Ordinary kriging

where

and kriging variance

!

Z(s0 ) = ! iZ(si )i=1

n

"

!T = " + 11# 1T$#1"1T$#11

%

&'(

)*

T

$#1

" = (" (s0 # s1),...," (s0 # sn))T

$ ij = " (si # sj )

m1(s0 ) = 2 ! i" (s0 # si )i=1

n

$ # ! i! j" (si # sj )j=1

n

$i=1

n

$

Parana data

Built-in geoR data setAverage rainfall over different years forMay-June (dry-season)143 recording stations throughoutParana State, Brazil

Parana precipitation

Fitted variogram

Is it significant?

Kriging surface

Kriging standard error

A better combination

Spatial trend

Indication of spatial trendFit quadratic in coordinates

Residual variogram

Effect of estimatedcovariance structure

The usual geostatistical method is toconsider the covariance known. When it isestimated• the predictor is not linear• nor is it optimal• the “plug-in” estimate of thevariability often has too low mean

Let . Is a goodestimate of m2(θ) ?

p2 (X) = p(X;!(X))

m1(!(X))

m2(!) = E!(p2 (X) " µ)2 m1(!)

Some results

1. Under Gaussianity, m2(θ) ≥ m1(θ) withequality iff p2(X)=p(X;θ) a.s.2. Under Gaussianity, if is sufficient,and if the covariance is linear in θ, then

3. An unbiased estimator of m2(θ) is

where is an unbiased estimator ofm1(θ).

!

E!m1(!) =m2(!) " 2(m2 (!) "m1(!))

2m !m1(")

m

Better predictionvariance estimator

(Zimmerman and Cressie, 1992)

(Taylor expansion; often approx. unbiased)

A Bayesian prediction analysis takesaccount of all sources of variability (Le andZidek, 1992; 2006)

Var(Z(s0;!)) "m1(!)

+2 tr cov(!) #cov($Z(s0;!)%&

'(

Some references

N. Cressie (1993) Statistics for Spatial Data. Rev. ed.Wiley. Pp. 105-112,119-123, 151-157.Zimmerman, D. L. and Cressie, N (1992): Mean squaredprediction error in the spatial linear model withestimated covariance parameters. Annals of theInstitute of Statistical Mathematics 44: 27-43.Le N. D. and Zidek J. V. (1992) Interpolation WithUncertain Spatial Covariances–A Bayesian AlternativeTo Kriging. 43 (2): 351-374.N. D. Le and J. V. Zidek (2006) Statistical Analysis ofEnvironmental Space-Time Processes. Springer-Verlag.

top related