kalman filtering and smoothing

Post on 17-Jan-2018

267 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Outline Introduction State Space Model Parameterization Inference Filtering Smoothing

TRANSCRIPT

Kalman Filtering And Smoothing

Jayashri

Outline

Introduction State Space Model Parameterization Inference

Filtering Smoothing

Introduction

Two Categories of Latent variable Models

• Discrete Latent variable -> Mixture Models

• Continuous Latent Variable-> Factor Analysis Models

Mixture Models -> Hidden Markov Model

Factor Analysis -> Kalman Filter

Application

Applications of Kalman filter are endless!

Control theory Tracking Computer vision Navigation and guidance system

State Space Model

C

…0x 1x 2x TxA A

0y 1y 2y Ty

C C C0

Independence Relationships:

• Given the state at one moment in the time, the states in the future are conditionally independent of those in the past.

• The observation of the output nodes fails to separate any of the state nodes.

Parameterization

1t t tx Ax Gw

ttt vCxy

.matrix covariance andmean 0 with noise whiteis where Rvt

Transition From one node to another:

Tttt GQGAxxx is covariance and mean has ,upon lConditiona 1

.matrix covariance andmean 0 with noise whiteis where Qwt

RCxyx ttt is covariance and mean has ,upon Condtional

00 covariance and 0mean has state Initial x

Unconditional Distribution

1 1 1[ ]Tt t tE x x

1[( )( ) ]Tt t t tE Ax Gw Ax Gw

[ ] [ ]T T T Tt t t t

T Tt

AE x x A GE w w G

A A GQG

•Unconditional mean of tx is zero.

•Unconditional covariance is:

Inference

Calculation of the posterior probability of the states given an output sequence Two Classes of Problems:

•Filtering

•Smoothing

Filtering

),...,|( 0 tt yyxP

],...,|[ˆ 0| tttt yyxEx

Notations:

],...,|)ˆ)(ˆ[( 0||| tT

tttttttt yyxxxxEP

Problem is to calculate the mean vector and Covariance matrix.

tt yyx ,...,on dconditione ofmean 0

tt yyx ,...,on dconditione ofmatrix covariance 0

Filtering Cont’d

)|(),...|( ,...,010 tttt yyxPyyxP

),...,|(),...|( 10101 tttt yyxPyyxP

tttt xAx ||1 ˆˆ

tx 1tx

ty 1ty

tx 1tx

1tyty

Time update:

Measurement update:

Time Update step:

],...|)ˆ)(ˆ[( 0|11|11|1 tT

tttttttt yyxxxxEP

],...|)ˆ)(ˆ[( 0|| tT

tttttttt yyxAGwAxxAGwAxE TT

tt GQGAAP |

Measurement Update step:

tt

ttttt

xCyyvCxEyyyE

|1

01101

ˆ ],...,|[],...,|[

RCCP

yyxCvCxxCvCxE

yyyyyyE

Ttt

tT

tttttttt

tT

tttttt

|1

0|111|111

0|11|11

],...|)ˆ)(ˆ[(

],...|)ˆ)(ˆ[(

tt

tT

ttttttt

tT

tttttt

CP

yyxxyCvCxE

yyxxyyE

|1

0|11|111

0|11|11

],...|)ˆ)(ˆ[(

],...|)ˆ)(ˆ[(

, ofmean lConditiona 1ty

, of covariance lConditiona 1ty

, and of covariance lConditiona 11 tt yx

Equations

tt

tt

xC

x

|1

|1

ˆ

ˆ

RCCPCP

CPPT

tttt

Ttttt

|1|1

|1|1

))(

)ˆ()(ˆˆ

|11

|11|11|1

|111

|1|1|11|1

ttT

ttT

ttttt

tttT

ttT

tttttt

CPRCCPCPPP

xCyRCCPCPxx

Using the equations 13.26 and 13.27

Mean Covariance

have, ,...on dconditione and ofon distributijoint The 011 ttt yyyx

1tx

1ty),...,|(),...|(),...|,( 01101011 tttttttt yyxyPyyxPyyyxP

Equations

tttt xAx ||1 ˆˆ

TTtttt GQGAAPP ||1

))(

)ˆ()(ˆˆ

|11

|11|11|1

|111

|1|1|11|1

ttT

ttT

ttttt

tttT

ttT

tttttt

CPRCCPCPPP

xCyRCCPCPxx

Summary of the update equations

11|1

1|1

1|1|1|1

111|1

1|1|11

))((

)(

)(

RCP

RCCPRCCPCPP

RCRCCP

RCCPCPK

Ttt

Ttt

Ttt

Ttttt

TTtt

Ttt

Tttt

)ˆ(ˆˆ |111|11|1 tttttttt xCyKxx

Kalman Gain Matrix

Update Equation:

Interpretation and Relation to LMS

tTtt vxy

tTttttt xxyRP )ˆ(ˆˆ

11

11

)ˆ(ˆˆ |11|1|1 tttttttt xCAyKxAx

The update equation can be written as,

•Matrix A is identity matrix and noise term w is zero

•Matrix C be replaced by the Ttx

tt Ixx 1

Update equation becomes,

Information Filter (Inverse Covariance Filter)

TGQGH

1 1

1|ˆ

tt1| ttS

ttS | tt|̂

Conversion of moment parameters to canonical parameters:

… Eqn. 13.5

Canonical parameters of the distribution of ly.respective ),...,|( and ),...,|( 010 tttt yyxPyyxP

CRCSS

HAAHASAHHS

yRC

HAASAH

Tttt

TTtttt

tT

tttt

ttT

tttt

111|1

111|

11|1

11

|11|1

|1

|1

|1

)(

ˆˆ

ˆ)(ˆ

Smoothing

Estimation of state x at time t given the data up to time t and later time T

•Rauch-Tung-Striebel (RTS) smoother (alpha-gamma algorithm)

•Two-filter smoother (alpha-beta algorithm)

0( | ,..., ) for t TP x y y t T

RTS Smoother

),...|( 0 tt yyxP

),...,|( 01 ttt yyxxP

•Recurses directly on the filtered-and-smoothed estimates i.e.

Alpha-gamma algorithm

tx 1tx

ty 1ty),...,|(),...,|( 0101 Tttttt yyxxPyyxxP

tx 1tx

1tyty),...|(),...,|( 001 TtTtt yyxPyyxxP

(RTS) Forward pass:

tt

tt

x

x

|1

|

ˆ

ˆ

tttt

Ttttt

PAP

APP

|1|

| |

have, ,...on lconditiona and ofon distributiJoint 01 ttt yyxx

Mean Covariance

pass.filter kalman from ),...|( havealready We 0 tt yyxPtx 1tx

ty 1ty

Backward filtering pass:

1|1|

|11|

|111|1||01

where

)ˆ(ˆ

)ˆ(ˆ],...,|[

ttT

ttt

tttttt

tttttT

ttttttt

PAPL

xxLx

xxPAPxyyxxE

tx 1txEstimate the probability of conditioned on

Ttttttt

ttttT

ttttttt

LPLP

APPAPPyyxx

|1|

|1|1||01

],...,|[Var

)ˆ(ˆ ],...,|[],...,|[

|11|

0101

tttttt

tttTtt

xxLxyyxxEyyxxE

Ttttttt

tttTtt

LPLP

yyxxyyxx

|1|

0101

],...,|[Var],...,|[Var

)ˆ(ˆ

],...|)ˆ(ˆ[ ],...,|],...,|[[

],...|[ˆ

|1|1|

0|11|

001

0|

ttTtttt

Ttttttt

TTtt

TtTt

xxLx

yyxxLxEyyyyxxEE

yyxEx

TtttTtttt

TttTtt

TtTt

LPPLP

yyxxVarEyyxxEVar

yyxVarP

)(

],...,,|[[],...,|[[

],...|[

|1|1|

0101

0|

]|],|[[]|[ ZZYXEEZXE Identities:

]|],|[[]|],|[[]|[ ZZYXVarEZZYXEVarZXVar

Ttt yyZxYxX ,...,, caseour In 01

Equations

TtttTttttTt

ttTttttTt

LPPLPP

xxLxx

)(

)ˆ(ˆˆ

|1|1||

|1|1||

Summary of update equations:

matrix.gain is where 1|1|

tt

Tttt PAPL

Two-Filter smoother

ttt GwAxAx 11

1

Forward Pass: ),...|( 0 tt yyxP

Backward Pass: ),...|( 1 Ttt yyxP

Naive approach to invert the dynamics which does not work is:

i.e. ),...,|( and ),...,|( Combines, 10 Ttttt yyxPyyxP

Alpha-beta algorithm

Cont’d

TTtt GQGAA 1

TT

tt

Tt

GQGAAA

A

t

TTTtt AGQGAAA

11

1

TTTtt AGQGAA 1

),,(For 1tt xxP

Covariance Matrix is:

We can invert the arrow between as, , and 1tt xx

tx

C C

A

ty 1ty

1tx

Which is backward Lyapunov equation.

1t1

11

-111

1

A TTT

t

Tt

TTTt

AGQGA

GQGAAGQGAAA

)(~ 11

11

tTGQGAIAA

Covariance matrix can be written as:

1t1

1

~

~ T

t

tt

A

A

TTtt GQGAA ~~~~~

1

11~~~

ttt wGxAx

We can define Inverse dynamics as:

GAG 1~

1111

~

tt

Ttt xQGQww

GQQGQ

wwEQ

tT

Ttt

11

11

]~~[~

Last issue is to fuse the two filter estimates.

Summary:

)ˆˆ(ˆ 1|11||

1|||

ttttttttTtTt xPxPPx

11~~~

ttt wGxAx

1t t tx Ax Gw

1111|

1|| )(

tttttTt PPP

Forward dynamics:

Backward dynamics:

tttt Px || and ˆ

1|1| and ˆ tttt Px

Fusion Of Guassian Posterior Probability

T

T

M

M MM R

x

z

1

1 1 -1 1

ˆ ( )

( )

T T

T T

x M M M R z

M R M M R z

z Mx v

1

1 1 1

( )

( )

T T

T

P M M M R M

M R M

where is independent of and has covariance v x RCovariance matix of ( , ) is,x z

1 2 1 2Problem is to fuse ( | ) and ( | ) into ( | , )P x z P x z P x z z

1 2 1 2, and random variables, and given , and are independentx z z x z z

13.36,eqn usingby )|( estimatecan We zxP

Fusion Cont’dx

1z 2z

1 1

2 2

z M x vz M x v

1 2 1 2 and are independent of and has covariance matrices and v v x R R

1 1 1 11 1 1 1 1 1 1

1 1 1 12 2 2 2 2 2 2

ˆ ( )ˆ ( )

T T

T T

x M R M M R z

x M R M M R z

1 1 11 1 1 1

1 1 12 2 2 2

( )

( )

T

T

P M R M

P M R M

1

2

MM

M

1

2

00 R

RR

1 2To calculate ( | , ),P x z z

1 1 1 11 2( )P P P P

1 11 1 2 2ˆ ˆ ˆ( )x P P x P x

top related