iutam symposium on physicochemical and...

Post on 30-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IUTAM Symposium on Physicochemical and ElectromechanicalInteractions in Porous Media

SOLID MECHANICS AND ITS APPLICATIONSVolume 125

Series Editor: G.M.L. GLADWELLDepartment of Civil EngineeringUniversity of WaterlooWaterloo, Ontario, Canada N2L 3GI

Aims and Scope of the SeriesThe fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchersgiving vision and insight in answering these questions on the subject of mechanics as itrelates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includesthe foundation of mechanics; variational formulations; computational mechanics;statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids andstructures; dynamical systems and chaos; the theories of elasticity, plasticity andviscoelasticity; composite materials; rods, beams, shells and membranes; structuralcontrol and stability; soils, rocks and geomechanics; fracture; tribology; experimentalmechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts aremonographs defining the current state of the field; others are accessible to final yearundergraduates; but essentially the emphasis is on readability and clarity.

For a list of related mechanics titles, see final pages.

IUTAM Symposium on Physicochemical andElectromechanicalInteractions in PorousMediaJ.M. HuygheDepartment of Biomedical Engineering,Eindhoven University of Technology,Eindhoven, The Netherlands

Peter A.C. Raats

Wageningen, The Netherlands

andStephen C. CowinNew York Center for Biomedical Engineering,School of Engineering, The City College,

Edited by

New York, NY, U.S.A.

formerly of Wageningen University and Research Centre,

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3864-X (HB)ISBN-13 978-1-4020-3864-8 (HB)ISBN-10 1-4020-3865-8 (e-book)ISBN-13 978-1-4020-3865-5 (e-book)

Published by Springer,P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmittedin any form or by any means, electronic, mechanical, photocopying, microfilming, recordingor otherwise, without written permission from the Publisher, with the exceptionof any material supplied specifically for the purpose of being enteredand executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

© 2005 Springer

Contents

Foreword ix

Acknowledgments xi

List of Participants xiii

Part I MICROMECHANICS

Bones Have Ears: An Application of Bone Poroelasticity 3Stephen C. Cowin

Representative Microstructure Finite Elements for Collagen Gels 37Preethi L. Chandran and Victor H. Barocas

Part II COUPLING AND WAVES

Viscous Effects in Particulates 45J. Carlos Santamarina, Julio R. Valdes, Angelica M. Palomino andJose Alvarellos

Pore Roughness Effects on High-Frequency Permeability 53David Smeulders, Andrea Cortis, Jean Luc Guermond and Denis Lafarge

Influence of High-Frequency Acoustic Waves on the Flow of a Liquidthrough Porous Material: Experimental and Theoretical Investigation 61

Pietro Poesio and Gijs Ooms

Part III NUMERICAL SIMULATION

Large Strain Analysis of 3-D Viscoelastic Swelling of Charged Tissues andGels 69

Wolfgang Ehlers, Bernd Markert and Ayhan Acartürk

Theoretical and Finite Element Models for Coupled Electro-Mechano-Chemical Transport in Soft Tissues 75

Bruce R. Simon, Gregg A. Radtke, Zun P. Liu, Paul H. Rigby andStuart K. Williams

v

vi Physicochemical and Electromechanical Interactions

Porous Effects in the Description of the Dynamics of Granular Avalanches 81Shiva P. Pudasaini, Yongqi Wang and Kolumban Hutter

A Multiphase Approach for the Analysis of Hygro-Thermo-Chemo-Mechanical Interactions in Concrete at Early Ages and at HighTemperature 91

Dariusz Gawin, Francesco Pesavento and Bernard A. Schrefler

Study of Drying Shrinkage Cracking by Lattice Gas Automaton andEnvironmental Scanning Electron Microscope 99

Dragana Jankovic

Part IV ELECTROMECHANICS AND SWELLING

Osmotic Transport through Clays and Capsules 111John D. Sherwood and Frédéric Risso

Electrokinetics in Random Deformable Porous Media 117Józef Joachim Telega and Ryszard Wojnar

Chemoporoelastic Parameter Identification of a Reactive Shale 125Emmanuel Detournay, Joel Sarout, Chee Tan and Jean Caurel

Measurements of Deformations and Electrical Potentials in a ChargedPorous Medium 133

Arjan J.H. Frijns, Jacques M. Huyghe and Marcel W. Wijlaars

Incorporating Chemical Effects in a Porothermoelastic Formulation andApplication to Inclined Boreholes 141

Shailesh Ekbote and Younane Abousleiman

Part V MAGNETIC RESONANCE

Ion Transport and Crystallization in Porous Materials as Studied by MagneticResonance Imaging 149

Leo Pel, Henk P. Huinink and Klaas Kopinga

Numerical and Experimental Studies of the Water and Ionic Mobilities withinSuspensions of Charged Anisotropic Colloids 159

Alfred Delville and Patrice Porion

Part VI TWO POROSITIES

A Chemo-Mechanical Model for Articular Cartilage 167Fernando M.F. Simões and Benjamin Loret

A Dual Porosity Model for Contaminant Transport in Expansive Clays 173Márcio A. Murad and Christian Moyne

Contents vii

Part VII DIFFUSION, DISPERSION AND ADSORPTION

On Adsorption and Diffusion in Microstructured Porous Media 183Pasquale Giovine

Effect of Water Volume Fraction on Electrical Conductivity and IonDiffusivity in Agarose Gels 193

Wei Yong Gu, Hai Yao and Adriana L. Vega

Hydrodynamic Dispersion and Chemical Reaction in Porous Media:The Use of Space Like Coordinates 201

David E. Smiles

Development of a Finite Element Approach to Mechanics, Transport andBiosynthesis in Tissue Engineering 207

Bram G. Sengers, Rolf A.A. Pullens, Cees W.J. Oomens andFrank P.T. Baaijens

Transport Across Single and Series Arrays of Membranes 213Peter Raats

Part VIII MICROSTRUCTURE

A Second Gradient Model for Deformable Porous Matrices Filled withan Inviscid Fluid 221

Fransesco dell’Isola, Guilio Sciarra and Romesh C. Batra

Relationship between Pore Structure and Fluid Transport inArgillaceous Rocks 231

Alexander Hildenbrand, Bernhard M. Krooss and Janos L. Urai

Part IX ELECTROMAGNETIC WAVES

Towards a Better Understanding of the Electromagnetic Propertiesof Soils 241

Katherine Klein and Yu-Hsing Wang

Porous Media Evaluation Using Frequency-Dependent Electrokinetics 251Philip M. Reppert and Taufiquar R. Khan

Part X CHEMO- AND ELECTRO-OSMOSIS

Charge Neutrality – Does It Exist? 259Lynn S. Bennethum

Shrinking and Cracking of Swelling Porous Media 267Pieter H. Groenevelt

viii Physicochemical and Electromechanical Interactions

Modelling of Chemical Osmosis in Clay 275Sam Bader and Ruud J. Schotting

Coupling between Chemical and Electrical Osmosis in Clays 283J.P. Gustav Loch, Katja Richter and Thomas J.S. Keijzer

Theoretical Analysis of the Influence of a diffuse Double-Layer onDarcy’s Law 289

David Smith and Peter Pivonka

Fluid Flow in the Self-Optimised Structure of Compact Bone 299Theo H. Smit and Jacques M. Huyghe

Interaction between Aqueous Solution Transport and Stress/Strain in aDeformable Porous Medium 307

Jean-Claude Bénet, Jérôme Boscus and Vincent Richefeu

Part XI PHASE TRANSITION AND CAPILLARITY

About the Proper Choice of Variables to Describe Flow-InducedCrystallization in Polymer Melts 315

Jan van Meerveld and Markus Hütter

A Micromechanics Approach to the Mechanically-Induced Dissolution inPorous Media 321

Eric Lemarchand, Luc Dormieux and Franz-Josef Ulm

Modeling of Ice Formation in Porous Media 329Joachim Bluhm, Max J. Setzer and Jens Kruschwitz

Thermomechanical Modelling for Freezing of Solute Saturated Soil 335Juha Hartikainen and Martti Mikkola

A Microscopic Description of Crystal Dissolution and Precipitation 343C.J. van Duijn and I. Sorin Pop

Theoretical Modeling and Experimental Monitoring of Material Destructionduring Drying 349

Stefan Jan Kowalski

Two Phase Flow in Capillary Porous Thermo-Elastic Materials 359Tim Ricken and Reint de Boer

Author Index 365

Foreword

The application of porous media mechanics which traditionally was mostlyfocussed upon geomechanics, has spread to a vast area of science. This area in-cludes polymer science, biomechanics, biomaterials, ceramics. Many of theseareas of application require the integration of many physical phenomena intoone single porous media model. Electrochemistry, statistical physics, fluidmechanics, molecular biology and electromagnetism are just a few examplesof these.

Particularly biomedical applications are engulfing the scientific literature.The scientific community is realising more and more that all tissues of thehuman body are porous media in which quantification of the dynamic rela-tions between fluid flow, solute diffusion-convection, stresses and strains areof paramount importance in medical applications. Increasing evidence showsthat living cells are very sensitive to mechanical stress, and that they shape thetissue that surrounds them according to the stimuli to which they are subjected.Bone cells and endothelial cells respond to fluid flow. Even the functioning cellitself is understood today as a versatile porous medium in which water and ionsplay an important role in the translation of the genetic code encripted into theDNA-molecule. Now that the genetic code has been uncovered, the focus ofscience shifts towards the unraveling of the mechanisms by which this codemanifests itself into a living cell, organs and bodies. Continuum mechanicsand poromechanics in particular may play a mayor role in this undertaking.

The chair of the symposium concluded the opening address of this sym-posium by claiming that (1) poromechanics has transformed the geotechnicalsciences in the 20th century and (2) the applications of poromechanics in thebiomedical sciences in the 21st century may well supersede by far the applica-tions of poromechanics in the field of geomechanics. This IUTAM symposiumfocussed upon bringing together people who deal with the mechanics of in-teractions in deforming porous media. These interactions include physico-chemical (solvation forces, adsorption), electrochemical (streaming potentials,electro-osmosis, electrophoresis), thermal and biological events. Generally thevisitors were experts from the fields of biomechanics, geomechanics or poly-

ix

x Physicochemical and Electromechanical Interactions

mer science. The communication between these fields has been fostered by theorganization of this symposium.

The topics chosen for the sessions were typically chosen so as to representproblems common to all three fields of application. For example, Micromech-anics of Porous Media, Electromechanical Interactions, Chemical and Electro-osmosis, Nuclear Magnetic Resonance in Porous Media, Dual Porosity. Thesymposium included 49 oral presentations and a dozen poster presentations.The meeting attracted 60 participants from 15 countries: Australia, Belgium,Brazil, Canada, Finland, France, Germany, Italy, The Netherlands, Poland,Portugal, Sweden, Switzerland, United Kingdom, United States.

Jacques HuygheAssociate ProfessorEindhoven University of TechnologyDepartment of Biomedical EngineeringEindhoven, The NetherlandsSeptember 2004

Acknowledgments

The symposium was sponsored by the following organizations:

International Union of Theoretical and Applied Mechanics.

Department of Biomedical Engineering, Eindhoven University of Tech-nology, The Netherlands

Kluwer Academic Publishers, Dordrecht, The Netherlands.

We are grateful for the support of our sponsors.

International Scientific Committee

Dick H. van Campen (Netherlands, Representative IUTAM)Olivier Coussy (France)Stephen C. Cowin (USA, Cochair)Wolfgang Ehlers (Germany)Jacques M. Huyghe (Netherlands, Chair)Yoram Lanir (Israel)Marcio A. Murad (Brazil)Peter A.C. Raats (Netherlands)J. Carlos Santamarina (USA)

Local Organising Committee

Yvonne M.J. BiemansCorrinus C. van DonkelaarJacques M. Huyghe (Chair)Peter A.C. RaatsMarleen H.W. RiekenReinder W. RoosAat C. StuurmanMarcel W. Wijlaars

xi

List of Participants

Y. AbousleimanUniversity of Oklahoma, Sarkeys Energy CenterSuite P119, 100 E. Boyd StreetNorman, OK 73019-1014USAyabousle@ou.edu+1-405-3252900+1-405-3257491

S. BaderTU DelftPostbus 5048 K.4.932600 GA DelftThe Netherlandss.bader@citg.tudelft.nl+31-15-2788155+31-15-2785915

V. BarocasUniversity of Minnesota312 Church St. SeMinneapolis, MN 55455USAbaroc001@umn.edu+1-612-6265572+1-612-6266583

J-C.B. BenetLMGC-UMR CNRS 5508Cc 048 Université Montpellier II Place E. Bataillo34095 MontpellierFrancebenet@lmgc.univ-montp2.fr+33-467-143755+33-467-144555

L. BennethumUniversity of Colorado at DenverPO Box 173364 Campusbox 170 Suite 638Denver, CO 80202USALynn.Bennethum@cudenver.edu

xiii

xiv Physicochemical and Electromechanical Interactions

+1-303-5564810+1-303-5568550

Y.M.J. BiemansEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsy.m.j.biemans@tue.nl+31-40-2472279+31-40-2447355

J. BluhmUniversity Essen, FB10Universitatsstr. 1545141 EssenGermanyjoachim.bluhm@uni-essen.de+49-201-1832660+49-201-1832680

C.V.C. BoutenEindhoven University of TechnologyPO Box 513, Whoog 4.1235600 MB EindhovenThe Netherlandsc.v.c.bouten@tue.nl+31-40-2473006+31-40-2447355

D.H. van CampenEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsd.h.v.campen@tue.nl+31-40-2472710+31-40-2437175

J. CarmelietKU Leuven, Dept. of Civil Eng.Kasteelpark Arenberg 51B-3001 HeverleeBelgium

xv

jan.carmeliet@bwk.kuleuven.ac.be+32-16-321343+32-16-321980

O. CoussyLCPC58 Bld. Lefebre75015 ParisFranceolivier.coussy@enpc.fr+33-164153622+33-164153741

S.C. CowinCity University of New York2166 Broadway, Apt. 12DNew York, NY 10024-6671USAscccc@cunyvm.cuny.edu+1-212-7997970+1-212-7997970

A.D. DelvilleCNRSCRMD, 1B rue de la Ferollerie45071 OrleansFrancedelville@cnrs-orleans.fr+33-238155369+33-238255376

E. DetournayUniversity of Minnesota, Dept. of Civil Eng.500 Pillsbury Drive SEMinneapolis, MN 55455USAdetou001@umn.edu+1-612-6253043+1-612-6267750

C.C. van DonkelaarEindhoven University of TechnologyPO Box 5135600 MB Eindhoven

List of Participants

xvi Physicochemical and Electromechanical Interactions

The Netherlandsc.c.v.donkelaar@tue.nl+31-40-2474837+31-40-2447355

L. DormieuxLMSGC/ENPC/CNRSENPC, 6 et 8, Avenue Blaise Pascal77455 Marne-la-ValléeFrancedormieux@lmsgc.enpc.fr+33-164-153660+33-164-153748

N.J.B. DriessenEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsn.j.b.driessen@tue.nl+31-40-2473048+31-40-2447355

H. van DuijnEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsc.j.v.duijn@tue.nl+31-40-2472855

W. EhlersUniversity of Stuttgart, Inst. of Applied MechanicsPfaffenwaldring 770569 StuttgartGermanyehlers@mechbau.uni-stuttgart.de+49-711-6856346+49-711-6856347

A.J.H. FrijnsEindhoven University of TechnologyPO Box 513 Whoog 3.1265600 MB Eindhoven

xvii

The Netherlandsa.j.h.frijns@tue.nl+31-40-2474825+31-40-2433445

D.J. GawinTechn. Univ. of Lodz, Dept. Building Phys. and Build. Mat.Al. Politechniki 693-590 LodzPolandgawindar@p.lodz.pl+48-42-6313560+48-42-6313556

P.G. GiovineUniversity of Reggio Calabria, Mech. and Mater.Via Graziella, 1 Localita Feo di VitoI-89060 Reggio CalabriaItalygiovine@unirc.it+39-965-331280+39-965-310084

P.H. GroeneveltUniversity of GuelphDept. of Land Resource ScienceGuelph, Ontario N1G 2W1Canadapgroenev@lrs.uoguelph.ca+1-519-8244120+1-519-8245730

W. GuUniversity of Miami1251 Memorial Drive, MCA 219ACoral Gables, FL 33146USAwgu@miami.edu+1-305-2845434+1-305-2846494

J. HartikainenHelsinki University of TechnologyPO Box 1100

List of Participants

xviii Physicochemical and Electromechanical Interactions

02015 HUT EspooFinlandjuha.hartikainen@csc.fi+358-9-4513078+358-9-4513070

A. HildenbrandRWTH-Aachen, LEKLochnerstr. 4-2052062 AachenGermanyalexandra.hildenbrand@vito.be+49-241-8098296+49-241-8092152

H. HuininkEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsh.p.huinink@tue.nl+31-40-2475375+31-40-2432598

K. HütterDarmstadt University of Technology, Dept. of Mechan.Hochschulstr. 164289 DarmstadtGermanyhutter@mechanik.tu-darmstadt.de+49-6151-162991+49-6151-164120

J.M. HuygheEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsj.m.r.huyghe@tue.nl+31-40-2473137+31-40-2447355

F. dell’IsolaUniversity of Rome “La Sapienza”

xix

Via Eudossiana, 18I-00184 RomeItalyfrancesco.dellisola@uniroma1.it+39-644-585297

D. JankovicTU Delft, Civil EngineeringStevinweg 12628 CN DelftThe Netherlandsdj32826@yahoo.com+31-15-2783752+31-15-2786383

K. KleinUniversity of Toronto35 St. Gearge StreetToronto, Ontario M5S 1A4Canadaklein@civ.utoronto.ca+416-946-5712+416-978-5054

S.J.K. KowalskiPoznán University of Technologypl. Marii Sklodowskiej-Curie 260-965 PoznánPolandkowal@rose.man.poznan.pl+61-6653622+61-6653649

J. KruschwitzUniversity EssenUniversitatsstr. 15 FB10 IBPM45141 EssenGermanyjens.kruschwitz@uni-essen.de+49-201-1834595+49-201-1833968

Y. LanirDept. Biomedical Eng. Technion

List of Participants

xx Physicochemical and Electromechanical Interactions

Technion City32000 HaifaIsraelyoram@biomed.technion.ac.il+972-4-8376440+972-4-8234131

R. LarssonChalmers University of TechnologyDepartment of Applied MechanicsS-412 96 GöteborgSwedenragnar.larsson@me.chalmers.se+46-31-7725267+46-31-7721303

E. LemarchandCNRS-LMLBoulevard Langevin, Cité Scientifique59655 Villeneuve d’AscqFrancelemarchand@lmsgc.enpc.fr+33-320-337182+33-320-337153

G. LochUtrecht University, Faculty of Earth SciencesBudapestlaan 43584 CD UtrechtThe Netherlandsjpgl@geo.uu.nl+31-30-2535042+31-30-2535302

K. MalakpoorEindhoven University of TechnologyDept. Mathematics Science, PO Box 5135600 MB EindhovenThe Netherlandsk.malakpoor@tue.nl+31-40-247 42 90+31-40-244 24 89

B. MarkertUniversity of Stuttgart, Inst. of Applied Mechanics

xxi

Pfaffenwaldring 770569 StuttgartGermanymarkert@mechbau.uni-stuttgart.de+49-711-6856341+49-711-6856347

R.L. MauckColumbia University, Dept. of Biomed. Eng.351 Engineering Terrace, MC 8904, 1210 Amsterdam AvenueNew York, NY 10027USArm159@columbia.edu+1-212-8546731+1-212-8548725

J. van MeerveldInstitute of Polymers, ETH ZürichSonneggstrasse 3CH-8092 ZürichSwitzerlandmeerveld@mat.ethz.ch+41-1-6324545+41-1-6321076

J.G.M. van MierSwiss Federal Institute of TechnologyInstitute for Building Materials8093 ZürichSwitzerlandvanmier@ibwk.baug.ethz.ch+41-1-6332709+31-1-6331087

M.J. MikkolaHelsinki University of TechnologyOtakaari 1.M.02150 EspooFinlandmartti.mikkola@hut.fi+358-9-4513067+358-9-4513070

C. MoyneCNRS-CEMTA

List of Participants

xxii Physicochemical and Electromechanical Interactions

2 Avenue de la Forêt de Haye BP 16054504 VandoeuvreFrancecmoyne@ensem.inpl-nancy.fr+3-83-595607+3-83-595531

M.A. MuradNat. Lab of Scientific ComputingAv. Getulio Vargas 33325651-070 PetropolisBrazilmurad@lncc.br+55-24-22336149+55-24-22336165

C. OddouUniversité de Paris 1261, Avenue du Generale-de gaulle94010 CreteilFranceoddou@univ-paris12.fr

C.W.J. OomensEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsc.w.j.oomens@tue.nl+31-40-247 2818+31-40-244 7355

L. PelEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsl.pel@tue.nl+31-40-2473406+31-40-2432598

M.A. PeletierCentrum voor Wiskunde en InformaticaKruislaan 413

xxiii

1098 SJ AmsterdamThe Netherlandspeletier@cwui.nl+31-20-5924226+31-20-5924199

F. PlourabouéCNRS UMR 5502GEMP/IMFT Allées du Pr. C. Soula31400 ToulouseFranceplourab@imft.fr+33-561-285880+33-561-285899

P. PoesioDelft University of TechnologyLeeghwaterstraat 212628 CB DelftThe Netherlandspietro.poesio@shell.com+31-70-4476055+31-70-4473366

S.R. PrideUniversity of Rennes 1Campus Beaulieu, Batiment 1535042 Rennes cedexFrancespride@univ-rennes1.fr+33-223-236737+33-223-236090

S.P. PudasainiDarmstadt University of Technology, Dept. of Mechan.Hochschulstr. 164289 DarmstadtGermanypudasain@mechanik.tu-darmstadt.de+49-6151-165370+49-6151-164120

P.A.C. RaatsWageningen University and Research Centre

List of Participants

xxiv Physicochemical and Electromechanical Interactions

Paaskamp 169301 KL RodenThe Netherlandspac.raats@home.nl+31-50-5018735

P. ReppertSchool of the Environment, Clemson University338 Brackett HallClemson, SC 29634USAreppert@clemson.edu+1-864-6565019+1-864-6561041

K. RichterUtrecht University, Dept. Earth SciencesPO Box 800213508 TA UtrechtThe Netherlandsrichter@geo.uu.nl+31-30-2535016+31-30-2535302

T. RickenUniversität Essen, Institut für Mechanik45117EssenGermanytim.ricken@uni-essen.de+49-201-1832679+49-201-1832680

M.H.W. RiekenEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsm.h.w.rieken@tue.nl+31-40-2472851+31-40-2447355

R.W. RoosEindhoven University of Technology

xxv

PO Box 5135600 MB EindhovenThe Netherlandsr.w.roos@tue.nl+31-40-2475398+31-40-244 7355

J.C. SantamarinaGeorgia Institute of TechnologyCivil EngineeringAtlanta, GA 30332USAcarlos.santamarina@ce.gatech.edu+1-404-8947605+1-404-8942282

R.J. SchottingTU DelftPostbus 5048 K.4.92.12600 GA DelftThe Netherlandsr.j.schotting@citg.tudelft.nl+31-15-2784844+31-15-2785915

G. SciarraUniversity of Rome “La Sapienza”, Dept. Chemical Eng.Via Eudossiana, 18I-00184 RomeItalygiulio.sciarra@uniroma1.it+39-644-4585230

B.G. SengersEindhoven University of TechnologyPO Box 513 Room WH 4.1035600 MB EindhovenThe Netherlandsb.g.sengers@tue.nl+31-40-2473075+31-40-2447355

J.D. SherwoodSchlumberger Cambridge Research

List of Participants

xxvi Physicochemical and Electromechanical Interactions

High Cross, Madingley RdCambridge CB3 0ELUKsherwood@cambridge.oilfield.slb.com+44-1223-325363+44-1223-327019

F. SimoesInstituto Superior TécnicoAv. Rovisco Pais, Decivil1049-001 LisboaPortugalfsimoes@civil.ist.utl.pt+351-218418409+351-218497650

B. SimonThe University of ArizonaAero and Mech. Engr. PO 210119Tucson, AZ 85721-0119USAsimon@ame.arizona.edu+1-520-6214451+1-520-6218191

D.M.J. SmeuldersDelft University of TechnologyPO Box 50282600 GA DelftThe Netherlandsd.m.j.smeulders@ta.tudelft.nl+31-15-2787599+31-15-2784891

D.E. SmilesCSIROPO Box 1666Canberra 2601Australiadavid.smiles@csiro.au+61-2-62465966+61-2-62465965

T.H. SmitVrije Universiteit Medisch Centrum

xxvii

Postbus 70571007 MB AmsterdamThe Netherlandsth.smit@vumc.nl+31-20-4441245+31-20-4444147

D. SmithThe University of NewcastleDiscipline of Civil, Surveying, Environmental EngnCallaghan 2308Australiacedws@cc.newcastle.edu.au+61-2-49216057+61-2-49216991

A. StuurmanEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsd.h.v.campen@tue.nl+31-40-2472710+31-40-2437175

F. SuhTulane UniversityLindy Boggs 500New Orleans, LA 70118USAfsuh@tulane.edu+1-504-8655852+1-504-8628779

J.J. TelegaPolish Academy of Sciences, Inst. of Fundamental Techn.ul. Swietokrzyska 2100-049 WarsawPolandjtelega@ippt.gov.pl+48-22-8265129+48-22-8269815

M.W. WijlaarsEindhoven University of Technology

List of Participants

xxviii Physicochemical and Electromechanical Interactions

PO Box 5135600 MB EindhovenThe Netherlandsm.w.wijlaars@tue.nl+31-40-2474813+31-40-2447355

L.H.G. WoutersEindhoven University of TechnologyPO Box 5135600 MB EindhovenThe Netherlandsl.h.g.wouters@tue.nl+31-40-2474088+31-40-2447355

I

MICROMECHANICS.

Chairman: Y. Abousleiman

BONES HAVE EARS:

An Application of Bone Poroelasticity

Stephen C. CowinThe New York Center for Biomedical EngineeringDepartments of Biomedical and Mechanical EngineeringThe School of Engineering of The City College andThe Graduate School of The City University of New YorkNew York, NY 10031, U.S.A.

Abstract The mechanosensory mechanisms in bone include (i) the cell system that is stim-ulated by external mechanical loading applied to the bone; (ii) the system thattransduces that mechanical loading to a communicable signal; and (iii) the sys-tems that transmit that signal to the effector cells for the maintenance of bonehomeostasis and for strain adaptation of the bone structure. The effector cells arethe osteoblasts and the osteoclasts. These systems and the mechanisms that theyemploy have not yet been unambiguously identified. A summary is presented ofthe current theoretical and experimental evidence suggesting that osteocytes arethe principal mechanosensory cells of bone, that they are activated by the effectsof fluid flowing through the osteocyte canaliculi, and that the electrically coupledthree-dimensional network of osteocytes and lining cells is a communicationssystem for the control of bone homeostasis and structural strain adaptation. Abone poroelastic (BP) model is employed to model the fluid flow behavior causedby the mechanical loading of bone. The similarities of the mechanotransductionsystem in bone with the mechanotransduction system used by the cells of thehearing system will be described. Both cell systems sense mechanical vibra-tions in a fluid domain.

Keywords: mechanosensation, bone, hearing, cell systems

Introduction

It has long been known that living adult mammalian bone tissue adapts itsmaterial properties, and that whole bones adapt their shape, in response toaltered mechanical loading [204–206, 57, 58, 191, 92, 110]. Progress is beingmade in understanding the cellular mechanisms that accomplish the absorp-tion and deposition of bone tissue. The physiological mechanism by which themechanical loading applied to bone is sensed by the tissue, and the mechanismby which the sensed signal is transmitted to the cells which accomplish the

Jacques M. Huyghe et al. (eds), IUTAM Proceedings on Physicochemical and Electromechan-ical Interactions in Porous Media, 3–36.© 2005 Springer. Printed in the Netherlands.

4 Physicochemical and Electromechanical Interactions

surface deposition, removal and maintenance, have not been identified. Thepurpose of this contribution is to review some of the background research onthese mechanosensory mechanisms and to outline candidates for the mechano-sensory system. See [35] for an earlier review of similar literature.

Mechanoreception is the term used to describe the process that transmitsthe informational content of an extracellular mechanical stimulus to a receptorcell. Mechanotransduction is the term used to describe the process that trans-forms the mechanical stimulus’ content into an intra-cellular signal. The termmechanosensory is employed to mean both mechanoreception and mechan-otransduction. Additional processes of inter-cellular transmission of trans-duced signals are required at tissue, organ and organismal structural levels.The mechanosensing process(es) of a cell enables it to sense the presence of,and to respond to, extrinsic physical loadings. This property is widespreadin uni- and multicellular animals [54, 101, 53, 74, 73, 36]; plants [201, 65]and bacteria [152]. Tissue sensibility is a property of a connected set of cellsand it is accomplished by the intracellular processes of mechanoreception andmechanotransduction.

The Connected Cellular Network (CCN)

The bone cells that lie on all bony surfaces are osteoblasts, either active orinactive. Inactive osteoblasts are called bone-lining cells; they have the poten-tial of becoming active osteoblasts (Figure 1). The bone cells that are buriedin the extracellular bone matrix are the osteocytes. Each osteocyte, enclosedwithin its mineralized lacuna, has many (perhaps as many as 80) cytoplasmicprocesses (Figure 1, Figure 2). These processes are approximately 15 mm longand are arrayed three-dimensionally in a manner that permits them to intercon-nect with similar processes of up to as many as 12 neighboring cells. Theseprocesses lie within mineralized bone matrix channels called canaliculi (Figure2, Figure 3). The small space between the cell process plasma membrane andthe canalicular wall is filled with bone fluid and macromolecular complexesof unknown composition. All bone cells except osteoclasts are extensivelyinterconnected by the cell process of the osteocytes forming a connected cel-lular network (CCN) [152]. The interconnectivity of the CCN is graphicallyillustrated by Figure 4 which is a scanning electron micrograph showing thereplicas of lacunae and canaliculi in situ in mandibular bone from a youngsubject aged 22 years. The inset of Figure 4 shows enlarged lacunae identifiedby a rectangle.

The touching cell processes of two neighboring bone cells contain gap junc-tions [8, 46, 47, 95, 182, 96, 67, 25]. A gap junction is a channel connectingtwo cells. The location of the gap junction is indicated by the arrowheads inFigure 2. The walls of the channel consist of matching rings of proteins pier-

top related