isfahan university of technology department of chemistry continuous synthesis of diethyl ether from...

Post on 27-Dec-2015

223 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Isfahan University of Technology

Department of Chemistry

Continuous Synthesis of Diethyl Ether from Sub and Supercritical Ethanol in the Presence

of Homogeneous Catalysts

By : H. Rastegari

Supervisor : Prof. H. S. Ghaziaskar

Advisor : Prof. M. Yalpani

Supercritical Fluid Definition

Supercritical Fluid Properties

Supercritical Fluids Classification

Supercritical Fluid Selection for Chemical Reactions

Supercritical Ethanol Properties

Supercritical Ethanol Applications

11

Contents

Introduction

Experimental Section

Instrumentation Diethyl Ether Determination Diethyl Ether Identification Effective Parameters on The Reaction

Conclusion

Providence

22

Supercritical Fluid Definition

3

Supercritical Fluid Properties

GasSupercritical Fluid

Liquid

Density (g.cm-3)(0.6-2) * 10-3(0.2-0.5)(0.6-2)

Diffusion Coefficient (cm2.s-1)(1-4) * 10-1(10-3-10-4)(0.2-2) * 10-5

Viscosity (g.cm-1.s-1)(1-3) * 10-4(1-3) * 10-4(0.2-3) * 10-2

44

Supercritical Fluids Classification

Non-associating Fluids

Associating Fluids

Critical Temperature

)o C(

CriticalPressure

)bar(

Density(g.cm-3)

CO231.173.80.466

H2O374.0220.60.322

EtOH240.861.40.280

5

Supercritical Fluid Selection for Chemical Reactions

Critical Temperature and Pressure

Solvent Strength

Corrosion

Toxicity

Supercritical Ethanol

66

Supercritical Ethanol Properties

Critical Temperature and Pressure

77

Density

88

99

Viscosity

Diffusion Coefficient

1010

Dielectric Constant

1111

Hydrogen Bonding

1212

1313

14

Kamlet-Taft Solvent Parameters:• Polarity / Polarizability (π )∗• Hydrogen-Bond Donating Acidity (α)

• Hydrogen-Bond Accepting Basicity (β)

1515

Polarity

Polarity / Polarizability (π )∗

1616

Hydrogen-Bond Donating Acidity (α)

1717

Hydrogen-Bond Accepting Basicity (β)

1818

Supercritical Ethanol Applications

Biodiesel Production

Chemical Reaction

Extraction

Micro and Nano Particle Formation

Drying

1919

Experimental Section

20

Instrumentation

21

1 -Feed Container7 -Oven

2 -High-Pressure Pump8 -Reactor

3 -Three Way Valve9 -Cooler

4 -Preheater 10 -High Pressure Valve

5 -Preheater Cell11 -Back Pressure Regulator

6 -Thermocouple12 -Collection Vessel

Diethyl Ether Determination

Carrier Gas: Nitrogen ( %99.999)

Column Type: Capillary (HP-5)

Injector Temperature : 230 oC

Detector Temperature : 250 oC

Temperature Program :

Column Primary Temperature : 40 oC

Column Hold Time at 40 oC : 2 min

Temperature Increasing Rate: 30 oC/min

Final Temperature : 250 oC

Hold Time at 250 oC : 5 min22

23

Ethanol

Diethyl Ether

Me

SO

Me

SO

Me

SO

Me

SO

O

OH

H O Et

O OH

OEt

H

O

OEt

OH2

O

OEt

H2O

Me

S

Me

SO

O

O C2H5

H O C2H5

SN2

O OH

O

CH3CH2 2O

24

25

Diethyl Ether Identification

Effective Parameters on The Reaction:

Temperature

Flow Rate

Catalyst Concentration

Pressure

Catalyst Type

26

Temperature and Flow Rate Effect

Catalyst : PTSA 2(%w/v)

Pressure : 80 bar

Temperature : (100-300) oC

Flow Rate : (0.1-0.7) mL/min

27

0

10

20

30

40

50

60

70

80

90

80 100 120 140 160 180 200 220 240 260 280 300 320

Temperature (C)

Eth

ano

l C

on

vers

ion

(%

)

0.1(mL/min)

0.2(mL/min)

0.4(mL/min)

0.7(mL/min)

Ethanol Conversion

28

0

10

20

30

40

50

60

70

80

90

100

80 100 120 140 160 180 200 220 240 260 280 300 320

Temperature (C )

Die

thyl

Eth

er S

elec

tivity

(%)

0.1 (mL/min)

0.2 (mL/min)

0.4 (mL/min)

0.7 (mL/min)

Diethyl Ether Selectivity

29

0

5

10

15

20

25

30

35

40

45

50

80 100 120 140 160 180 200 220 240 260 280 300 320

Temperature (C)

Die

thyl

Eth

er Y

ield

(%

)

0.1 (mL/min)

0.2 (mL/min)

0.4 (mL/min)

0.7 (mL/min)

Diethyl Ether Yield

30

Temperature(oC)Flow Rate(mL.min-1)Conversion(%)Selectivity(%)Yield(%)

1000.1N.D.N.D.N.D.

0.2N.D.N.D.N.D.

0.4N.D.N.D.N.D.

0.7N.D.N.D.N.D.

1500.138.232.712.5

0.230.022.07.0

0.424.520.35.0

0.718.118.53.3

2000.151.376.239.0

0.240.760.424.5

0.432.863.620.6

0.728.851.314.7

2500.161.031.319.0

0.247.065.031.0

0.438.048.018.3

0.732.241.013.0

3000.176.57.25.4

0.265.413.48.8

0.441.828.111.7

0.733.943.514.631

Catalyst Concentration Effect

Temperature : 200 oC

Flow Rate : 0.1 mL/min

Pressure : 80 bar

PTSA Concentration : 2-4 (%w/v)

PTSA Concentration (%w/v)Conversion(%)Selectivity(%)Yield(%)

252.081.342.1

464.194.560.4

32

Pressure Effect

Temperature : 200 oC Flow Rate : 0.1 mL/min PTSA Concentration : 2 (%w/v) Pressure : (60-80) bar

Pressure (bar)Conversion(%)Selectivity(%)Yield(%)

6051.575.038.3

8052.080.041.6

10053.077.040.8

33

Catalyst Type

Temperature : 200 oC Flow Rate : 0.1 mL/min Pressure : 80 bar Catalyst Concentration : 2 (%w/v)

CatalystConversion(%)Selectivity(%)Yield(%)

PTSA52.080.041.6

H2SO477.099.075.0

34

Synthesis of Diethyl Ether in Sub and Supercritical Ethanol in The Presence of Para Toluene Sulfonic Acid and Sulfuric Acid.

Maximum Yield with Para Toluene Sulfonic Acid: %60

Maximum Yield with Sulfuric Acid: %75

35

Conclusion

36

Providence

Synthesis of Other Alkyl Ethers

Diethyl Ether Synthesis in The Presence of Heterogeneous Catalysts

Diethyl Ether Separation from Ethanol

Thanks for

Your Attention

Page 5

dG = ( u2-u1) dn

u = (dG/ dn)T,P

Page 6

the transition-state theory rate constant :

or

One could also develop an alternate expression for the

transition-state theory rate constant that employs fugacity

coefficients rather than activity coefficients. This alternate form of the rate constant is convenient to use when an accurate

analytical equation of state is available for the fluid phase.

Page 8

Page 25

Swine Manure Bio-oil

T = 240-360 oC and P= 34.47 MPas and Purge with N2

30 gr waste + 120 gr ethanol Solid + Bio-oil +Liquid

Bio-oil + Liquid Bio-oil

Filter

Distillation

at 60 oC

Page 25

Depolymerization of PET

T= 543 – 573 K and P= 0.1 – 15 MPas

These products were produced by the methanolysis ethanolysis or hydrolysis of the ester bond between TPA and EG.

top related