inverse hyperbolic trigonometric...

Post on 20-Mar-2021

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Inverse Hyperbolic Trigonometric Functions

Dr. Bander Almutairi

King Saud University

3 Oct 2013

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 1 / 7

1 Derivatives of Inverse Hyperbolic Trigonometric Functions

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 2 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u))

=1√

u2 + 1u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u))

=1√

u2 − 1u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u))

=1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u))

=1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u))

=−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1

=−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

If u = u(x) is a differentiable function of x , then

d

dx(sinh−1(u)) =

1√u2 + 1

u′

d

dx(cosh−1(u)) =

1√u2 − 1

u′, u > 1

d

dx(tanh−1(u)) =

1

1− u2u′, |u| < 1

d

dx(coth−1(u)) =

1

1− u2u′, |u| > 1

d

dx(sech−1(u)) =

−1

u√

1− u2u′, 0 < u < 1

d

dx(csch(u))−1 =

−1

|u|√

1 + u2u′, u 6= 0

where u′ = dudx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 3 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples:

Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x)

=1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x)

=1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Examples: Find f ′(x) for the following:[1] f (x) = cosh−1(

n√x3).

Solution:

f ′(x) =1√

(n√x3)2 − 1

.d

dx(

n√x3)

=1√

(n√x3)2 − 1

.1

n(x3)

1−nn .3x .

[2] f (x) = tanh−1(cos(ln(x))).

f ′(x) =1

1− (cos(ln(x)))2.d

dx(cos(ln(x)))

=1

1− (cos(ln(x)))2.(− sin(ln(x)).

1

x)

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 4 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

Exercises: Find f ′(x) for the following:

1 f (x) = [sinh(x2)]cosh(3x+2).

2 f (x) = etanh(√x3+1).

3 f (x) = sech−1(tanh(ex3+2x+5)).

4 f (x) = coth−1(sin(5x)).

5 f (x) = x tanh−1(x) + ln(√

1− x2).

6 f (x) = 1+cosh(x)1−cosh(x) .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 5 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx

= sinh−1(x/a) + c , a > 0∫1√

x2 − a2dx = cosh−1(x/a) + c , 0 < a < x∫

1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0

∫1√

x2 − a2dx = cosh−1(x/a) + c , 0 < a < x∫

1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx

= cosh−1(x/a) + c , 0 < a < x∫1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx = cosh−1(x/a) + c , 0 < a < x

∫1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx = cosh−1(x/a) + c , 0 < a < x∫1

a2 − x2dx =

1

atanh−1(x/a) + c

∫1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx = cosh−1(x/a) + c , 0 < a < x∫1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx

= −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx = cosh−1(x/a) + c , 0 < a < x∫1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

∫1√

a2 + x2dx = sinh−1(x/a) + c , a > 0∫

1√x2 − a2

dx = cosh−1(x/a) + c , 0 < a < x∫1

a2 − x2dx =

1

atanh−1(x/a) + c∫

1

x√a2 − x2

dx = −1

asech−1(x/a) + c

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 6 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

:

Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

Derivatives of Inverse Hyperbolic Trigonometric Functions

: Evaluate the following integrals:

1∫

15√64+25x2

dx .

2∫

2√2−e2x dx .

3∫

1x√4−x4 dx .

4∫

1√x .√1+x

dx .

5∫

181−25x2 dx .

Dr. Bander Almutairi (King Saud University) Inverse Hyperbolic Trigonometric Functions 3 Oct 2013 7 / 7

top related