interstellar shocks: the contribution of sofia/great2015/11/25  · interstellar shocks:! the...

Post on 23-Mar-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Interstellar shocks:!The contribution of SOFIA/GREAT!

Antoine Gusdorf, ! ! ! ! ! ! LERMA, Paris, France!

Claudio Codella, ! ! ! ! ! ! ! ! ! !INAF Firenze, Italy!Rolf Güsten, ! ! ! ! ! ! ! ! ! MPIfR, Bonn, Germany!Sibylle Anderl, ! ! ! ! ! ! ! ! ! ! IPAG, Grenoble, France!Maryvonne Gerin, ! ! ! ! ! ! ! ! ! LERMA, Paris, France!Bertrand Lefloch, ! ! ! ! ! ! ! ! ! IPAG, Grenoble, France!Pierre Lesaffre, ! ! ! ! ! ! ! ! ! ! LERMA, Paris, France!Silvia Leurini, ! ! ! ! ! ! ! ! ! MPIfR, Bonn, Germany!Alexandre Marcowith, ! ! ! ! ! ! ! LUPM, Montpellier, France!Frédérique Motte, ! ! ! ! ! ! ! ! ! IPAG, Grenoble, France!

25/11/15! 1!SOFIA community tele-talk series!

1!

Outline!

•  The importance of shocks in the interstellar medium of galaxies!

•  From low-mass star formation…!

•  …To higher-mass star formation!

•  Filaments and ridges!

•  Supernova remnants!

25/11/15! 2!SOFIA community tele-talk series!

2!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

adapted from!Gusdorf et al. 2015 !

archive image!Spitzer/IRAC 8 "m!

3!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

4!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

5!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

6!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

CO (3-2)!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

7!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

CO (3-2)!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

8!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

•  physical processes!

•  chemical !enrichment!

CO (3-2)!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

9!

The importance of shocks in the ISM of galaxies!

0.1 pc!

BHR71!

•  energetic impacts!

•  star formation:!!  scenarios !!  triggered!

•  cosmic rays!

CO (3-2)!

•  physical processes!

•  chemical !enrichment!

archive image!Spitzer/IRAC 8 "m!

adapted from!Gusdorf et al. 2015 !

10!

From low-mass star formation…!

25/11/15! 11!SOFIA community tele-talk series!

11!

Low-mass star formation: the BHR71 example!

BHR71! CO (3-2)!

CO (6-5)!

SiO (5-4)!

H2!0-0 S(5)!

12!

Low-mass star formation: the BHR71 example!

BHR71!

SiO : Gusdorf et al. 2011 !

CO : Gusdorf et al. 2015 !

H2 : Giannini et al. 2010 !

13!

1D shock models!

pré-choc! post-choc!

nH = 104 cm-3 ; vs = 30 km/s!

•  J shock (Jump) ; !

B = 10 "G!

vs > vcritical !

impulse heating ;!

single fluid!

14!

1D shock models!

pré-choc! post-choc!

nH = 104 cm-3 ; vs = 30 km/s!

•  J shock (Jump) ; !

B = 10 "G!

vs > vcritical !

impulse heating ;!

single fluid!

15!

1D shock models!

pré-choc! post-choc!•  C shock (Continuous) ; !

B = 100 "G!

vs < vcritical!

ion-neutral friction ; !

multi-fluid!

nH = 104 cm-3 ; vs = 30 km/s!

•  J shock (Jump) ; !

B = 10 "G!

vs > vcritical !

impulse heating ;!

single fluid!

16!

1D shock models!

pré-choc! post-choc!

nH = 104 cm-3 ; vs = 30 km/s!

•  C shock (Continuous) ; !

B = 100 "G!

vs < vcritical!

ion-neutral friction ; !

multi-fluid!

•  J shock (Jump) ; !

B = 10 "G!

vs > vcritical !

impulse heating ;!

single fluid!

17!

1D shock models!

nH = 104 cm-3 !

vs = 30 km/s!

âge 2000 ans!

pré-choc! post-choc!

CJ shock!

18!

Tracing the propagation of shocks: SiO emission!

pre-shock medium:!

SiO* ! mantles!Si** ! cores!

19!

Tracing the propagation of shocks: SiO emission!

Grain charge!(Flower & Pineau des Forêts 2003)!

SiO* ! mantles!Si** ! cores!

pre-shock medium:!

20!

Tracing the propagation of shocks: SiO emission!

mantle sputtering (Flower & Pineau des Forêts 1994, semi-classical prescriptions) :!

SiO* + (H, He, H2) " SiO + (H, He, H2)!

core erosion (May et al. 2000, Monte-Carlo simulations) :!

Si** + (He, C, N, O, H2O, N2, CO, O2) " Si + (He, C, N, O, H2O, N2, CO, O2)!

Grain charge!(Flower & Pineau des Forêts 2003)!

pre-shock medium:!

SiO* ! mantles!Si** ! cores!

21!

Tracing the propagation of shocks: SiO emission!

SiO formation in the gas phase, from grain-core silicium:!

Si + O2 " SiO + O!

(Le Picard et al. 2001, CRESU experiment) !

Si + OH " SiO + H !

(Rivero-Santamaria, Dayou et al. 2014, quantum calculations) !

grain charge!

core erosion!

mantles sputtering!

pre-shock medium:!

SiO* ! mantles!Si** ! cores!

22!

Tracing the propagation of shocks: SiO emission!

gas phase, chemical destruction of SiO: !

SiO + OH " SiO2 + H!

(prescription E. Herbst)!

adsorption (freeze-out) on to grains :!

SiO + grain " SiO* + grain!

grain charge!

core erosion!

mantles sputtering!

gas phase formation!

pre-shock medium:!

SiO* ! mantles!Si** ! cores!

23!

Tracing the propagation of shocks: SiO emission!

•  level populations and transition emissivities calculations:!

!  statistical equilibrium equations!

!  ‘Large Velocity Gradient’ (LVG) assumption!

!  collisional excitation rate coefficients of SiO by H2, H, He !

(calculated by Dayou & Balança 2006)!

grain charge!

core erosion!

mantles sputtering!

gas phase formation!

gas phase destruction!

adsorption!

pre-shock medium:!

SiO* ! mantles!Si** ! cores!

24!

Comparing observations with models!

SiO observations!H2 observations!

CO observations!

25!

Comparing observations with models!

SiO observations!H2 observations!

CO observations!

•  CJ model, nH = 104 cm-3, vs = 22 km/s, B = 150 "G ; 1% of Si ! SiO* (pre-shock)!

!  physical conditions are constrained!

(shock age, magnetic field strength)!

!  silicon chemistry constrained (initial distribution, processes)!

!  ejection rate (precise) measure: 7.10-6 M"/an!

!  pure shock diagnosis!Gusdorf et al. 2015a !

26!

Comparing observations with models!

SiO observations!H2 observations!

CO observations!

•  CJ model, nH = 104 cm-3, vs = 22 km/s, B = 150 "G ; 1% of Si ! SiO* (pre-shock)!

!  physical conditions are constrained!

(shock age, magnetic field strength)!

!  silicon chemistry constrained (initial distribution, processes)!

!  ejection rate (precise) measure: 7.10-6 M"/an!

!  pure shock diagnosis!Gusdorf et al. 2015a !

27!

BHR71: the latest news!

SiO observations!H2 observations! CO observations!

•  New PACS & HIFI observations of CO, OH and OI lines !

CJ model, nH = 104 cm-3, vs = 22 km/s, B = 150 "G ; 1% of Si ! SiO* (pre-shock)!

28!

BHR71: the latest news!

SiO observations!H2 observations! CO observations!

•  New PACS & HIFI observations of CO, OH and OI lines !

CJ model, nH = 104 cm-3, vs = 22 km/s, B = 150 "G ; 1% of Si ! SiO* (pre-shock)!

OI observations!•  OI: models ~1% of observations!

#  we are missing something!

#  irradiated shocks!

#  some kind of jet component ?!

Benedettini et al., in prep.!

29!

BHR71: the latest news!

Gusdorf et al., in prep.!

30!

BHR71: the latest news!

Gusdorf et al., in prep.!

31!

BHR71: the latest news!

Gusdorf et al., in prep.!

32!

BHR71: the latest news!

Gusdorf et al., in prep.!

33!

…To higher-mass star formation!

25/11/15! 34!SOFIA community tele-talk series!

34!

Intermediate-mass star formation: Cepheus E!

The Cep E outflow at 4.5 "m by Spitzer/IRAC!

0.07 pc!

35!

Intermediate-mass star formation: Cepheus E!

The Cep E outflow at 4.5 "m by Spitzer/IRAC!

CO (2-1)!

CO (12-11)!

CO (13-12)!

SOFIA!

SOFIA!

IRAM-30m!

Gomez-Ruiz et al. 2012!

0.07 pc!

36!

Intermediate-mass star formation: Cepheus E!

The Cep E outflow at 4.5 "m by Spitzer/IRAC! Lefloch et al. 2015!

0.07 pc!

37!

Intermediate-mass star formation: Cepheus E!

The Cep E outflow in CO (2-1) by the PdBI! Lefloch et al. 2015!

38!

Intermediate-mass star formation: Cepheus E!

•  Jet, cavity, HH 377:!

LVG analysis of CO emission!

=> (N, Tkin) estimates !

•  Southern lobe:!

!  jet mass: 0.02 M", 1.7 M"km/s!!  outflow cavity mass: 0.32 M", !

2.8 M"km/s !

=> molecular jet driven bowshock!

•  (Non-irradiated) shock models of !

the jet hot component!

=> perspectives: chemistry (SO, SiO, !

HCO+, IRAM-30m and PdBI, !

Lefloch et al. in prep, I, II, later H2O)!

39!

Massive star formation: G5.89-0.39!

Hunter et al. 2008! Su et al. 2012!

•  “The Harvey & Forveille 1988 outflow”: !!  one massive O-type (imaged) star (Feld’s star); !!  one UC HII region surrounded by a PDR-like cocoon, 5 continuum sources; !!  one Br# outflow, 3 molecular outflows (seen in H2, CO, SiO and HCO+);!!  a collection of OH, H2O, CH3OH, and NH3 maser spots !

0.03 pc!

40!

Massive star formation: G5.89-0.39!

•  APEX and Herschel (HIFI and PACS) observations of 12CO and 13CO!

•  Analysis of CO emission:!

!  warm component (275 K, 107 cm-3) or (1200 K, 105 cm-3); N~3.1017 cm-2!

!  colder component thanks to APEX observations of 13CO (3-2), (6-5):!

(75 K, 6.1018 cm-2)!Gusdorf et al., accepted by A&A!

41!

Massive star formation: G5.89-0.39!

•  CI optically thin and in LTE conditions !

•  Tex ~ 70 +/- 20 K, !

Nblue ~ Nred ~ 3.1017 cm-2!

=> associated to CO cold component!

CI 3P1 – 3P0!CI 3P2 – 3P1!

Also observed: SiO, CH+…!

42!

Massive star formation: G5.89-0.39!

Gusdorf et al., accepted by A&A!

C+ 2P3/2 – 2P1/2!CO (16 – 15)!

•  CI optically thin and in LTE conditions !

•  Tex ~ 70 +/- 20 K, !

Nblue ~ Nred ~ 3.1017 cm-2!

=> associated to CO cold component!

CI 3P1 – 3P0!CI 3P2 – 3P1!

•  CII LTE assumption!

•  similarity of profile with CO (16-15)!

=> associated to CO warm component!

Tex ~ 250 K, !

Nblue ~ 5.1017 cm-2 > N (CO)!

Also observed: SiO, CH+…!

43!

Massive star formation: G5.89-0.39!

Leurini et al., in press!

H2O, Herschel!

44!

Massive star formation: G5.89-0.39!

H2O, Herschel!

OI 3P1 – 3P2!at 63 "m!

SOFIA/GREAT!

OH, SOFIA/GREAT!

Leurini et al., in press!

45!

Massive star formation: G5.89-0.39!

H2O, Herschel!

OI 3P1 – 3P2!at 63 "m!

SOFIA/GREAT!

OH, SOFIA/GREAT!

Leurini et al., in press!

46!

Massive star formation: Cep A!

Gusdorf et al. 2015b !

47!

Filaments and ridges!

48!

Schneider et al. 2010!

Filaments and ridges! 49!

Hennemann et al. 2012!

Filaments and ridges!

Schneider et al. 2010!

50!

The W43-MM1 ridge!

Nguyen-Luong et al. 2013, Motte et al. 2014!

1 pc!

The W43MM1 filament in SiO (2-1), Louvet et al. 2014!

DE

C. (

J200

0)

R.A. (J2000)

12

9

10

11

8 5

6 4

3 7

1 2

51!

The W43-MM1 ridge!

1 pc!

DE

C. (

J200

0)

R.A. (J2000)

1 pc!

1 pc!

local bipolar outflows!

Nguyen-Luong et al. 2013, Motte et al. 2014!

The W43MM1 filament in SiO (2-1), Louvet et al. 2014!

Louvet et al., in prep.!

12

9

10

11

8 5

6 4

3 7

1 2

52!

The W43-MM1 ridge!D

EC

. (J2

000)

R.A. (J2000)

1 pc!

Nguyen-Luong et al. 2013, Motte et al. 2014!

The W43MM1 filament in SiO (2-1), Louvet et al. 2014!

53!

The W43-MM1 ridge!

•  Models are ready (Louvet et al., in prep.):!!  two scenarios: 10% pre-shock Si in the gas phase (Sig) or in the mantle (Sim)!!  two values of interstellar radiation field tested: G0 = 0, 1!

54!

The W43-MM1 ridge!

APEX! SOFIA!

Gusdorf et al., in prep.!

55!

The W43-MM1 ridge!

APEX! SOFIA!

Gusdorf et al., in prep.!ALMA Cycle 2, 2500 AU, 0.4’’, preliminary !! PI$: F. Motte!

56!

The extra-Galactic perspective!

•  CO ladders observations from external galaxies!Large scale effects from PDR, XDR, and shock contributions!NGC 253 Hailey-Dunsheath et al. 2008 ; M82 Panuzzo et al. 2010 ; NGC 891 Nikola et al. 2011 ; NGC 6240 Meijerink et al. 2013!

•  Herschel/PACS observations of NGC1068, Hailey-Dunsheath et al. 2012!

Schinnerer et al. 2000, CO (1-0)!

57!

The extra-Galactic perspective! 58!

The extra-Galactic perspective!

Kamenetzky et al. 2014!

59!

Supernova remnants!

25/11/15! 60!SOFIA community tele-talk series!

60!

W28!

W28!

Emission at 327 MHz, by Claussen et al. 1997!

5 pc!

61!

W28!

Emission at 327 MHz, by Claussen et al. 1997!

5 pc!CO (6-5) & (3-2)! W28F!

Gusdorf et al. 2012!

62!

W28!

5 pc!CO (6-5) & (3-2)! W28F!

Gusdorf et al. 2012!

(3-2)!(4-3)!(6-5)!(7-6)!

(11-10)!

63!

W28!

Gusdorf et al. 2012!

CO (6-5) & (3-2)!5 pc W28! W28F!

327 MHz emission, Claussen et al. 1997!

CO H2

64!

W28!

CO H2

Gusdorf et al. 2012!

CO (6-5) & (3-2)!5 pc W28! W28F!

327 MHz emission, Claussen et al. 1997!

65!

W28!

•  2 C-shocks, nH = 104 cm-3, vs = 20-25 km/s, B = 45-100 "G constrain:!

!  the momentum injected by the shock : !

! 140 – 420 M" km s-1 per position!

!  the energy injected by the shock:!

6 – 18 1045 erg per position!

66!

IC 443!

5’ ~2.2 pc!

IC443 !(Gusdorf et al., in prep.)!

CO (6-5)!CO (2-1)!

67!

IC 443!

•  IC443 : CO (6-5) + H2 0-0 S(5) !

IC443G! Gusdorf et al. 2014!(proceedings IAU 296) !

68!

IC 443!

•  IC443 : CO (6-5) + H2 0-0 S(5) + YSOs !

IC443G! Gusdorf et al. 2014!(proceedings IAU 296) !

69!

IC 443!

•  IC443 : CO (6-5) + H2 0-0 S(5) + YSOs + molecular cloud CO (1-0) !

Towards the SNR’s

progenitor

IC443G! Gusdorf et al. 2014!(proceedings IAU 296) !

70!

IC 443!

•  Riquelme et al., in prep. : !!  Spectral survey IC443G!!  compared to hot core G31.41+0.31!!  X-, #- rays, !and cosmic rays!

IC443G!

IC443G!

G31.41+0.31!

71!

IC 443!

•  Riquelme et al., in prep. : !!  Spectral survey IC443G!!  compared to hot core G31.41+0.31!!  X-, #- rays, !and cosmic rays!

IC443G!

IC443G!

G31.41+0.31!

72!

IC 443!

•  protons – MIS :!!  %0 decomposition ! ! #!

•  leptons – MIS :!!  Bremsstrahlung ! ! ! #!!  Inverse Compton ! #!!  Synchrotron ! ! ! #!

73!

IC 443!

•  protons – MIS :!!  %0 decomposition ! ! #!

•  leptons – MIS :!!  Bremsstrahlung ! ! ! #!!  Inverse Compton ! #!!  Synchrotron ! ! ! #!

H2 0-0 S(5) CO (6-5)

•  Contribution to RCs studies!

through ISM studies: !

W28F, 3C391 !

(Gusdorf et al. 2012, Neufeld et al. 2014)!

W44E&F (Anderl, Gusdorf & Güsten 2014)!

G349.7+0.2 (Rho et al., in press)!

Meyer et al, 2015 #

74!

IC 443!

•  protons – MIS :!!  %0 decomposition ! ! #!

•  leptons – MIS :!!  Bremsstrahlung ! ! ! #!!  Inverse Compton ! #!!  Synchrotron ! ! ! #!

•  Contribution to RCs studies!

through ISM studies: !

W28F, 3C391 !

(Gusdorf et al. 2012, Neufeld et al. 2014)!

W44E&F (Anderl, Gusdorf & Güsten 2014)!

G349.7+0.2 (Rho et al., in press)!

Meyer et al, 2015 #

H2 0-0 S(5) CO (6-5)

HESS!

75!

IC 443!

.

76!

IC 443!

5’ ~2.2 pc!

IC443 !(Gusdorf et al., in prep.)!

CO (6-5)!CO (2-1)!

CTA!

CTA!

HESS!

77!

IC 443!

5’ ~2.2 pc!

CTA!

CTA!

ALMA!

HESS!

CO (6-5)!CO (2-1)!

78!

Perspectives!

25/11/15! 79!SOFIA community tele-talk series!

79!

Perspectives!

•  Importance of studying various environments!All objectives are intricated!

•  Extend shock studies: !!  whole objects!!  2-, 3-D geometry (line profiles fitting) !!  processes (UV field influence, X-rays, #-rays, cosmic rays)!!  chemistry (SiO, H2O, tracers, COMs: spectral surveys)!!  methods (‘big data’)!

•  Extend the context!!  link with extra-Galactic!!  link with CRs!

25/11/15! 80!SOFIA community tele-talk series!

80!

Thanks for your attention !!

25/11/15! 81!SOFIA community tele-talk series!

81!

top related