interferometric radiometry measurement concept: the visibility equation

Post on 30-Jan-2016

36 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

INTERFEROMETRIC RADIOMETRY MEASUREMENT CONCEPT: THE VISIBILITY EQUATION. I. Corbella, F. Torres, N. Duffo, M. Martín-Neira. Interferometric Radiometry. Technique to enhance spatial resolution without large bulk antennas. - PowerPoint PPT Presentation

TRANSCRIPT

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

INTERFEROMETRIC RADIOMETRY MEASUREMENT CONCEPT: THE VISIBILITY

EQUATION

I. Corbella, F. Torres, N. Duffo, M. Martín-Neira

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 2/31

Interferometric Radiometry• Technique to enhance spatial resolution without

large bulk antennas.• Based on cross-correlating signals collected by pairs

of ”small” antennas (baselines).• Image obtained by a Fourier technique from

correlation measurements. No scanning needed.• Examples:

– Precedent: Michelson (end of 19th century). Astronomical observations at optical wavelengths.

– Radioastronomy: Very Large Array (1980). 27 dish antennas, 21 km arm length Y-shape. Various frequencies.

– Earth Observation: SMOS (2009). 69 antennas, 4m arm length Y-shape. L-band.

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 3/31

2122

21

221 2 bbbbbbvd

Interferometry: Fringes

distant point source

d

α0

Δℓ

x

z

Δr=d cos α0

b1 b2

)/(cos1 crtAb )/(cos2 ctAb

vd

Δℓ/λΔr/λ

A2

2A2

)//(2cos22 rAAvd

Quadratic detector

Cross-correlationTotal power

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 4/31

Michelson’s “Fringe Visibility”:

usincminimafringemaximafringe

minimafringemaximafringe

Fringe Visibility

)//(2cossinc ruIIvd

distant small source with constant intensity

I

Cross-correlation for Δℓ=0: 021 2cossinc uuIbb

d

α0

Δξ

Δℓ ξ0=cos α0

x

z

vd

u=d/λ

Δr=d cos α0

b1 b2

vd

Δℓ/λΔr/λ

I

2I0

1

0.5

0.75

uΔξ

Δr/λ=uξ0

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 5/31

Definition 02sinc)( ujeuIuV

Complex Visibility

• Michelson’s “fringe visibility” is the amplitude of the complex visibility |V(u)|=I·|sinc uΔξ| normalized to the total intensity of the source.

• The cross correlation between both signals for Δℓ=0 is the real part of the complex visibility <b1 b2>=Re[V(u)]. The imaginary part is obtained by adding a 90º phase shift (quarter wavelength) to one of the signals.

• The complex visibility is the Fourier Transform of the Intensity distribution expressed as a function of the director cosine ξ: V(u)=F[I(ξ)]

d

α

Δξξ=cos α

x

z

b1 b2

u=d/λ

Δξ

ξ0

I0

ξ u

0

0)( II ujeuIuV 020 sinc)(

I0Δξ=II(ξ) V(u)

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 6/31

x

y

d

deTuV ujB

2)()(

ddeTvuV vujB

)(2),(),(

The spatial resolution is achieved• by synthesized beam in ξ • by antenna pattern in η

x

y

dv

u

The spatial resolution is achieved by synthesized beam in both dimensions (ξ and η).Different options for geometry:

• Y-shape, Rectangular, T-shape, Circle, Others

d

u

Use Brightness Temperature (TB) instead of intensity (I):1-

D

2-D

Interferometric radiometres

1

122

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 7/31

Only limited values of (u,v) are available: The measured visibility function is necessarily windowed.

ddeTvuV vujB

)(2),(),(

dudvevuVT vujB

)(2),(),(

dudvevuVvuWT vujB

)(2),(),(),(ˆ

ddAFTT BB ),(),(),(ˆ

Direct equation

Fourier inversion

Retrieved brightness temperature

Convolution integral

• Array Factor: Inverse Fourier transform of the window• It is the “synthetic beam”. It sets the spatial resolution• Its width depends on the maximum (u,v) values (antenna maximum

spacing)

Spatial resolution: Synthetic beam

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 8/31

-0.5 0 0.50

0.2

0.4

0.6

0.8

1

(A/)

t( )

Comparison between Interferometric and Real apertures

InterferometricReal

Comparison with real apertures

Rectangular u-v coverage and no window

u

v

uM-uM

-vM

vM MM vuAF 2sinc2sinc

A=Δxmax, B=Δymax: Maximum distance between antennas in each direction

A

uM B

vM

Physical aperture with uniform fields

x

y

A

BEH

BA

AF 2sinc2sinc

22

sincsinc),(

BA

t

0.60

0.88

(for small angles around boresight)

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 9/31

Y-shape instrument (19 antennas per arm)

= 1.73 deg = 2.46 deg

Rectangular window Blackmann window

Examples of Synthetic beam

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 10/31

42,1

),(),(1

2,1dtTT BA

r1

r2

b1

b2

1

2

1 )( AkTfb

2

2

2 )( AkTfb

• Power spectral density:Antenna temperature

• Cross-Power spectral density:Visibility

12*21 )()( kVfbfb

4

)(*21

21

1221),(),(),(

1deFFTV rrjk

nnB

(units: Kelvin)

phase difference

(complex valued)

Microwave Radiometry formulation

Antenna field patterns

TB(θ,)

Extended source of thermal radiation

Antenna power pattern

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 11/31

The anechoic chamber paradox

T kTdtkTkTb A

4

2,12,1

2,1

2

2,1 ),(1

V12 is apparently non-zero and antenna dependent

4

*21

21

12*21 ),(),( deFF

kTkVbb rjk

nn

But V12 should be zero (Bosma Theorem)

anechoic chamber at constant temperature

Experiments confirm that V12=0

T

• Power spectral density: Antenna temperature

• Cross Power spectral density: Visibility

TA=T (OK!)

12 rrr

b1

b2

T

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 12/31

The “–Tr” term

TThe solution is found when all noise contributors are taken into account.

)(),(),(1 *

2212*2111

4

*21

21

SSSSdeFF rjknn

Cross power spectral density for total output waves:

Tr

Tr

Consistent with Bosma theorem:• Tr: equivalent temperature of noise produced by the receivers and

entering the antennas. This noise is coupled from one antenna to the other.

• If the receivers have input isolators, Tr is their physical temperature.

4

)(*21

21

*21

21),(),(),( deFFTTk

bb rrjknnrB

0),(if *21 bbTT rB

b1

b2

a1

a2

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 13/31

0 5 10 15 2010

-4

10-3

10-2

10-1

100

101

Antenna separation normalized to wavelength

K

Visibility of an empty chamber at 293K

No -Tr termTheoryMeasurement

4

*21

21

ch ),(),( deFFT rjk

nn

4

*21

21

ch ),(),( deFFTT rjk

nnr

Empty chamber visibilityResult from IVT at ESA’s Maxwell Chamber

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 14/31

Cold Sky Visibility

Arm A

Chamber Chamber

Chamber

SkySky

Sky

Arm B

Arm CBlue:SMOS at ESA’s Maxwell Chamber

Red:SMOS on flight during external calibration

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 15/31

Limited bandwidth and time correlation

Receiver 1

Receiver 2

b1

b2 Complex correlation

bs1

bs2

Average powerBandwidth: B1

Gain: G1

Bandwidth: B2Gain: G2

)(2)( 1111

2

1 RA TTBkGtb

)(2)( 2222

2

2 RA TTBkGtb

TA: Antenna temperature (K)

12122121*21 2)()( VGBBGGktbtb

TR: Receiver noise temperature (K)

dt

dt

dt

V12: Visibility (K)

b1,2(t): Analytic signals

412

*21

21

120)/(~1

decrrFFTTV rjknnrB

dfefHfHGGBB

etr ftj

tfj

2

0

*21

2121

2

12 )()()(~0

c

fk 0

0

2

Centre frequency: f0

Fringe washing function)0(~/)(~)(~

121212 rtrtr

)0(~1212 rG

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 16/31

Director cosines and antenna spacing

distant source point

R

x y

z

Antenna location at coordinates (x1,y1,z1)

θ

r1

111

21

1 2z

R

zy

R

yx

R

x

R

dRr

Director cosines

cossinR

x sinsinR

y

At large distances (R>>d1)

d1

For two close antennas in the x-y plane: )()( 121212 yyxxrr

Phase difference: )(2)( 12 vurrkrk

12 xx

u

12 yyv

Antenna normalized spacing

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 17/31

Notes:

* ukj and vkj are defined in terms of the wavelength at the centre

frequency.

* The visibility has hermiticity property

The visibility equation

1

)(2

0

*

2222

~),(),(1

),(1),(

dde

f

vurFF

TTvuV kjkj vujkjkj

kjnjnkrB

jk

kjkjkj

0f

vu

c

rr

c

r kjkjkj

Physical temperature of receivers Tr=(Trk+Trj)/2

*kjjk VV

0kj

kj

xxu

0kj

kj

yyv

Antenna relative

spacing:

Decorrelation time:

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 18/31

The zero baseline

• V(0,0) is equal to the difference between the antenna temperature and the receivers’ physical temperature.

• It is redundant of order equal to number of receivers.• At least one antenna temperature must be measured.• In SMOS, two methods have been considered:

– Three dedicated noise-injection radiometers (NIR)– All receivers operating as total power radiometers.

• The selected baseline method is the first one (NIR)

putting u=v=0 rAknkrB

kk TTddF

TTV

1

2

2222

),(1

),(1)0,0(

V(0,0)=TA-Tr

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 19/31

Polarimetric brightness temperatures

2*ppp

ppB EEET

ΔΩObservation point

Brightness temperature at p polarisation:

*qp

pqB EET

** pqBpq

qpB TEET

Complex Brightness temperature at p-q polarisations:

qqB

ppB TTI qq

Bpp

B TTQ ][2 pqBTeU ][2 pq

BTmV

Relation with Stokes parameters:

(p,q): orthogonal polarization basis (linear, circular, …)

qEpEE qp ˆˆ

2

0

22

BkTE

Spectral power density:

if

2

0

22

qqB

ppBqp TTkEE

2*qqq

qqB EEET Brightness temperature at q polarisation:

Thermal radiation

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 20/31

Polarimetric interferometric radiometer

4

)(*21

21

1221),(),(

1deTFFV rrjkpq

Bqp

qp

pq

4

)(*21

21

1221))(,(),(

1deTTFFV rrjk

rpp

Bpp

pp

pp

bp1

bq1

OMT

),(1 pFp output

q output

),(1 qF

Antenna 1

bp2

bq2

OMT

),(2 pFp output

q output

),(2 qF

Antenna 2

Visibility at pp polarization

4

)(*21

21

1221))(,(),(

1deTTFFV rrjk

rqq

Bqq

qq

qq

Visibility at qq polarization

Visibility at pq polarization

4

)(*21

21

1221),(),(

1deTFFV rrjkqp

Bpq

pq

qp

Visibility at qp polarization

*1221pqqp VV

*1221qppq VV

*1221pppp VV

*1221qqqq VV

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 21/31

1

)(2

0

*

2222

~),(),(1

),(1),(

dde

f

vurFF

TTvuV kjkjkj vujkjkj

kjnjnk

rB

jk

kjkjkj

Visibility: For any pair of antennas k,j (k≠j)

Physical temperature of receivers: Trkj=(Trk+Trj)/2

*kjjk VV

0kj

kj

xxu

0kj

kj

yyv

Antenna relative

spacing:

1

2

2222

),(1

),(1

ddFT

T nkB

kkA aNk 1

Antenna Temperature: For any single antenna k

(hermiticity)

Image Reconstruction

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 22/31

The Flat-Target response

1

)(2

0

*

2222

~),(),(

1

1),(

dder

FFjkFTR kjkj vuj

f

kjvkju

kj

j

nj

k

nk

Definition

The visibility of a completely unpolarised target having equal brightness temperature in any direction (“flat target”) is:

),()(),( jkFTRTTvuVkjrBkjkj

FTkj

MeasurementIt can be measured by pointing the instrument to a known flat target as the cold sky (galactic pole).

EstimationIt can also be estimated (computed) from antenna patterns and fringe washing functions measurements.

For large antenna separation, FTR≈0

kjrB

FTkj TTVjkFTR ),(

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 23/31

Image reconstruction consists of solving for T(ξ,η) in the following equation

1in 22 (zero outside)

ddeTvuV vuj )(2),(),(

0

*

22

~),(),(

1

),(

f

vur

FFTT kj

j

nj

k

nk

and V and T depend of the approach chosen:

),( kjkjkj vuVkk rA TT

rB TT ),(

),(),( jkFTRTvuVkjrkjkjkj

kAT ),( BT

),()(),( jkFTRTTvuVkjkj rAkjkjkj

AB TT ),( 0

),( vuV )0,0(V ),( T

#1

#2

#3

Approach

where

T(ξ,η) is only function of (ξ,η)

0, vu

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 24/31

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

u

v

-4 -2 0 2

-4

-3

-2

-1

0

1

2

3

4

x/

y/

Antenna Positions and numberingu

17

13

19

8

14

v

Example: NEL=6; d=0.875

Principal values

Hermitic values

Hexagonal sampling (MIRAS)

u,v points

NEL=6

Na=3NEL+1=19

u=(xj-xk)/λ0

v=(yj-yk)/λ0

pair (k,j):

• Number of antenna pairs: Na(Na-1)/2

• Number of unique (u-v) points: 3[NEL(NEL+1)]

Na: Total number of antennas

NEL : Number of antennas in each arm. An antenna in the centre is considered.

3[NEL(NEL+1)]=126

3[NEL(NEL+1)]=126

• Number of points in the “star”: 6[NEL(NEL+1)]+1

253 total points

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 25/31

-2 -1 0 1 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10

15

20

u

v

Unit circle

Alias-free Field Of View (FOV):Zone of non-overlapping unit circle aliases

Discrete sampling produces spatial periodicity: AliasesVisibility: (u-v) domain Brightness temperature: (ξ-η) domain

Aliasing

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 26/31

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

hsat=755 km, tilt=32.5º, d=0.875

Strict and extended alias-free field of view

Zone of non-overlapping Earth contours

Earth ContourUnit Circle

Earth aliasesUnit Circle aliases

Alias-Free Field of View Extended Alias-Free Field of view

Antenna Boresight

Zone of non-overlapping unit circles

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 27/31

Projection to ground coordinates

-1000 -500 0 500 1000

-200

0

200

400

600

800

1000

1200

Cross track coordinate (km)

Alo

ng

tra

ck c

oo

rdin

ate

(km

)

hsat=755 km, tilt=32.50º, d=0.875

Swath: 525 km

Nadir

Boresight

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 28/31

Geo-location

Regular grid in director cosines Irregular grid in lat-lon

• The regular grid in xi-eta is mapped into irregular grid in longitude-latitude

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 29/31

Full polarimetric SMOS snapshot

xxBT

yyBT

]Re[ xyBT ]Im[ xy

BT

North-west of Australia

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 30/31

SMOS sky image

Universitat Politècnica de Catalunya

•Remote•Sensing•Laboratory

28th July 2011 IGARSS 11. Vancouver. Canada 31/31

Conclusions• Interferometric radiometry has a long heritage that

goes back to the 19th century. SMOS has demonstrated its feasibility for Earth Observation from space.

• The complete visibility equation for a microwave interferometer must include the effect of antenna cross coupling and receivers finite bandwidth.

• Image reconstruction is based on Fourier inversion. Improved performance is achieved by using the flat target response.

• Aliasing induces a complex field of view. In SMOS two zones with different data quality exist: Alias-free and extended alias-free.

• Spatial resolution, sensitivity, incidence angle and rotation angle have significant variations inside the Field of view.

top related