inorganic chemistry 2 - yazd

Post on 03-Feb-2022

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

12/4/2015

1

Advanced Inorganic Chemistry

Alireza Gorjiagorji@yazd.ac.ir

Department of Chemistry, Yazd University

agorji@yazd.ac.ir 2

Introduction

12/4/2015

2

Thermodynamics Kinetics

G = H -T S ‡G = H‡ -T S‡

G° = -RTlnK ‡G= -RTlnk

G

G

Reaction Coordinate

‡G

G

Reaction Coordinate

Large K → yield=100% Large k → fast reaction

3agorji@yazd.ac.ir

Kinetics vs. Thermodynamics

Thermodynamics Kinetics

A

G<0

G

B

A is unstable

ناپايدار

G>0

G

Reaction Coordinate

B

A

A is stable

پايدار

‡G is small

GA is labile

واکنش پذير

A

B

A is inert

بی اثر

‡G is large

G

Reaction Coordinate

A

B

4agorji@yazd.ac.ir

12/4/2015

3

A is unstable ناپايدار

A

G

Reaction Coordinate

labile

inert

5agorji@yazd.ac.ir

Thermodynamics Kinetics

G / H / S / K ‡ G / ‡ H / ‡ S / k

Stable پايدار

Unstable ناپايدارInert بی اثر

Labile واکنش پذير

nonspontaneous غيرخودبخودی

SpontaneousخودبخودیSlow آهسته

Fast سريع

Acid

Base

Electrophile

Nucleophile

6agorji@yazd.ac.ir

12/4/2015

4

Reaction Mechanisms

Intimate

Mechanism

Stoichiometry

Mechanism

7agorji@yazd.ac.ir

agorji@yazd.ac.ir 8

G

Reaction Coordinate

Stoichiometry Mechanism

Intimate

Mechanism

rds

12/4/2015

5

Substitution Reaction

MLnX + Y MLnY + X

9agorji@yazd.ac.ir

10agorji@yazd.ac.ir

Stoichiometry Mechanisms

12/4/2015

6

11agorji@yazd.ac.ir

Stoichiometry Mechanisms in Substitution Reaction

Dissociative InterchangeAssociative

D IA

ML5X + YML5Y + X X=Leaving group

Y=Entering group

agorji@yazd.ac.ir 12

D

Dissociative Mechanism in Substitution Reaction

ML5X ML5 + X slow

ML5 + Y ML5Y fast

rate = k1 [ML5X]

k1

k2

12/4/2015

7

agorji@yazd.ac.ir 13

A

Associative Mechanism in Substitution Reaction

ML5X + Y ML5XY slow

ML5XY ML5Y + X fast

k1

k2

rate = k1 [ML5X][Y]

Fast equilibrium

K1 = k1/k-1

k2 << k-1

For [Y] >> [ML5X]

14agorji@yazd.ac.ir

Interchange Mechanism in Substitution Reaction

I

12/4/2015

8

agorji@yazd.ac.ir 15

Intimate Mechanisms in Substitution Reaction

associative activation (a)

dissociative activation (d)

agorji@yazd.ac.ir16

Intimate Mechanisms in Substitution Reaction

d

a

Dd

Aa

Da

a

d

Ad

12/4/2015

9

17agorji@yazd.ac.ir

da

IdIa

agorji@yazd.ac.ir 18

a d

A Aa Ad

D Da Dd

I Ia Id

Mechanisms in Substitution Reactions

12/4/2015

10

agorji@yazd.ac.ir 19

Determination of Stoichiometry Mechanisms

1. Detection of intermediate by fast

spectroscopy and ultrafast spectroscopy.

2. Synthesis and isolation of intermediate.

3. Stereochemistry of reaction.

A & D

agorji@yazd.ac.ir 20

Determination of Intimate Mechanisms

Experimental evidence a d

Sensitivity to entering group

Sensitivity to leaving group

trans effect

cis effect

Increasing of steric hindrance on cis ligands - +

Increasing of positive charge on complex + -

S‡ > 0

V‡ > 0

12/4/2015

11

agorji@yazd.ac.ir 21

1- Substitution Reaction in Square Planar Complexes

ML3X + Y ML3Y + X

22agorji@yazd.ac.ir

M = Pt

12/4/2015

12

agorji@yazd.ac.ir 23

Substitution of square planar Pt2+ complexes

agorji@yazd.ac.ir 24

12/4/2015

13

25agorji@yazd.ac.ir

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

solvent pathway

nucleophile

pathway

agorji@yazd.ac.ir 26

rate = k1 [S][PtA3X] + k2[Y][PtA3X]

rate = k1[PtA3X] + k2[Y][PtA3X]

rate = (k1 + k2[Y])[PtA3X]

If [Y] >> [PtA3X] rate = kobs[PtA3X]

kobs = (k1 + k2[Y])

slope = k2

k1

kobs

[Y]

k1 = solvent pathway

k2 = nucleophile pathway

rate law for square planar Pt2+ complexes

k2 nucleophile a

12/4/2015

14

agorji@yazd.ac.ir 27

agorji@yazd.ac.ir 28

12/4/2015

15

agorji@yazd.ac.ir 29

[PtA2Cl2] + Y [PtA2ClY] + Cl

Y Donor atom

npt

Cl- Cl 3.04

C6H5SH S 4.15

CN- C 7.00

(C6H5)3P P 8.79

CH3OH O 0

I- I 5.42

NH3 N 3.06

agorji@yazd.ac.ir 30

12/4/2015

16

31agorji@yazd.ac.ir

The trans effect

agorji@yazd.ac.ir 32

12/4/2015

17

agorji@yazd.ac.ir 33

G

Reaction Coordinate

-acceptor-donor

Mechanism of the trans labilization

agorji@yazd.ac.ir 34

12/4/2015

18

35agorji@yazd.ac.ir

trans labilization

agorji@yazd.ac.ir 36

Selective synthesis using the trans effect

12/4/2015

19

agorji@yazd.ac.ir 37

agorji@yazd.ac.ir 38

12/4/2015

20

agorji@yazd.ac.ir 39

40agorji@yazd.ac.ir

Steric effect

12/4/2015

21

41agorji@yazd.ac.ir

Activation parameters V‡ / S‡

agorji@yazd.ac.ir 42

Stereochemistry

12/4/2015

22

43agorji@yazd.ac.ir

Aa or Ia

44agorji@yazd.ac.ir

12/4/2015

23

45agorji@yazd.ac.ir

ML5X + Y ML5Y + X

2- Substitution Reaction in Octahedral Complexes

Characteristic lifetimes for exchange of water molecules in aqua complexes

46agorji@yazd.ac.ir

12/4/2015

24

• Labile:

• s-block elements: Large e.g. Na+, K+, Ba2+ etc…

• d-block elements: 1st row, distorted geometries, d10

• f-block

• Inert:

• s-block elements (only a few are relatively ‘inert’); Small e.g. Be2+, Mg2+

• d-block elements: d3 and d6 in Oh high-field, e.g. CrIII, CoIII. Second and third row.

Lability & Inertness

Labile complexes Fast substitution reactions (< few min)

Inert complexes Slow substitution reactions (>h)

a kinetic concept

47agorji@yazd.ac.ir

Inert !

48agorji@yazd.ac.ir

12/4/2015

25

49agorji@yazd.ac.ir

agorji@yazd.ac.ir 50

12/4/2015

26

51agorji@yazd.ac.ir

The Eigen-Wilkins mechanism

ML5X + Y ⇌ ML5X‖Y fast

ML5X‖Y ⇀ ML5Y +X slowk

KE

rate = k[ML5X‖Y]

[ML5X‖Y]= KE[ML5X][Y]

rate = k KE[ML5X][Y]

if [Y]>>[ML5X] [Y]0 ≅ [Y][ML5X]0= [ML5X]+ [ML5X‖Y]= [ML5X](1+ KE[Y])

rate = k KE[ML5X]0[Y]/ (1+ KE[Y])

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

52agorji@yazd.ac.ir

rate = k KE[ML5X]0[Y] 0/ (1+ KE[Y] 0)

k

Id

12/4/2015

27

53agorji@yazd.ac.ir

The Fuoss-Eigen equation

54agorji@yazd.ac.ir

Leaving group effects

12/4/2015

28

Rate is independent of the nature of L

Entering group effects

Rate is dependent on the nature of L

56agorji@yazd.ac.ir

Entering group effects

12/4/2015

29

agorji@yazd.ac.ir 57

58agorji@yazd.ac.ir

Steric effects

12/4/2015

30

59agorji@yazd.ac.ir

Cone Angle

60agorji@yazd.ac.ir

12/4/2015

31

agorji@yazd.ac.ir 61

The effect of overall charge

[CoL5Cl]2+ + H2O [CoL5OH2]3+ + Cl- k1

[CoLL4Cl]+ + H2O [CoLL4OH2]2+ + Cl- k2

L = amine k1/ k2=1/1000

62agorji@yazd.ac.ir

Activation Energetics

12/4/2015

32

63agorji@yazd.ac.ir

Octahedral Substitution and ΔV‡

64agorji@yazd.ac.ir

Octahedral Substitution General Rules

12/4/2015

33

65agorji@yazd.ac.ir

Stereochemistry in Octahedral Substitution

agorji@yazd.ac.ir 66

12/4/2015

34

agorji@yazd.ac.ir 67

agorji@yazd.ac.ir 68

12/4/2015

35

69agorji@yazd.ac.ir

The cis effect

agorji@yazd.ac.ir 70

12/4/2015

36

agorji@yazd.ac.ir 71

72agorji@yazd.ac.ir

Base catalyzed hydrolysis of amines

12/4/2015

37

73agorji@yazd.ac.ir

Dissociative Conjugate Base (DCB) Mechanism

DCB

agorji@yazd.ac.ir 74

12/4/2015

38

agorji@yazd.ac.ir 75

agorji@yazd.ac.ir 76

12/4/2015

39

agorji@yazd.ac.ir 77

top related