in the heltonian era control, optimization, and functional analysis

Post on 18-Dec-2015

224 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

In The Heltonian Era

Control, Optimization, and Functional Analysis

The Heltonian Era

• 1970 From Dark Ages to Birth of Enlightenment• 1980 Robust control, operator theory• 1990 Matrix inequalities, convex optimization• 2000 Nonlinear control, algebraic geometry• 2010 ??

– Networks, sparsity, structure– Mixed boolean & real algebra/geometry– Expansion of applications in basic science and

infrastructure

Robust control, operator theory

Matrix inequalities,

convex optimization

Doyle(t) and Helton(t)

Nonlinear control,

algebraic geometry

Multiscale physics Biology

MedicineEcology

Geophysics

Internet

Smartgrid

Economics

Biology

Medicine

Control, Optimization, and Functional Analysis

Na Li, John Doyle, and a cast of thousands (including Ben Recht and Marie Csete)

Caltech

Cardiovascular

Robust Fragile

Human complexity

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Robust Fragile

Mechanism?

Metabolism Regeneration & repair Healing wound /infect

Fat accumulation Insulin resistance Proliferation Inflammation

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

Robust Fragile

What’s the difference?

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Accident or necessity?

Fat accumulation Insulin resistance Proliferation Inflammation

Fluctuating energy

Static energy

Robust Fragile

What’s the difference?

Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

ControlledDynamic

UncontrolledChronic

Low meanHigh variability

High meanLow variability

Robust Fragile

Restoring robustness

ControlledDynamic

UncontrolledChronic

Low meanHigh variability

High meanLow variability

Robust Yet Fragile

Human complexity

Metabolism Regeneration & repair Microbe symbionts Immune/inflammation Neuro-endocrine Complex societies Advanced technologies Risk “management”

Obesity, diabetes Cancer Parasites, infection AutoImmune/Inflame Addiction, psychosis… Epidemics, war… Catastrophes Obfuscate, amplify,…

Accident or necessity?

Robust Fragile Metabolism Regeneration & repair Healing wound /infect

Obesity, diabetes Cancer AutoImmune/Inflame

Fat accumulation Insulin resistance Proliferation Inflammation

• Fragility Hijacking, side effects, unintended… • Of mechanisms evolved for robustness • Complexity control, robust/fragile tradeoffs• Math: New robust/fragile conservation laws

Accident or necessity?

Both

Robust Metabolism Regeneration & repair Healing wound /infect

• Fragility Hijacking, side effects, unintended… • Of mechanisms evolved for robustness • Complexity control, robust/fragile tradeoffs• Math: New robust/fragile conservation laws

Robust Metabolism Regeneration & repair Healing wound /infect

Fat accumulation Insulin resistance Proliferation Inflammation

Fluctuating energy

ControlledDynamic

Low meanHigh variability

Mechanism?

Brain

Heart

Muscle

Liver

GI

Glu

Triglyc

Fat

Glyc

Glyc

FFA

Glycerol

Oxy

Lac/ph

Food

Out

fast slow

high

low

pri

ori

tydynamics

Control?

• Energy• Inflammation• Coagulation

Evolved for large energy variation and

moderate trauma

Brain

Heart

Muscle

Glyc

Oxy

Out

fast

high

low

pri

ori

tydynamics

Control?

Essential starting point?

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

“grey box”

Plumbing and

chemistry

Robust/Health

Fragile/Illness

Persistent mystery

Low meanHigh variability

High meanLow variability

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 35040

60

80

100

120

140

HR

HR datatime(sec)

High mean, low variability

Low mean, high variability

The persistent mystery

Two experiments with same subject

Heart rate data

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

Our approach

Physiology!an ancient art

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 40040

60

80

100

120

140

160

180

Other views1. Molecular genetics2. Creation science3. New sciences of- complexity- networks

What gene?

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

watts

watts

time(sec)

Data: Watts and HR

Two experiments with same subject

Data: Watts

W

0

50

100

150

+100w

Two experiments

On recumbent Lifecycle

Data: Watts and HR

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

W

time(sec)

wattsHR data

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

data

W

model

time(sec)

watts

1st order linear model

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

data

W

model

time(sec)

watts

same 1st order linear model

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

time(sec)

Model and HR

same 1st order linear model

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HRHR data W

time(sec)

Model and HR

1st order linear models(different parameters)

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

W

time(sec)

Explain differences between models

??

?

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR HR dataW

time(sec)

Explain differences between models and data

0 50 100 150 200 250 3000

50

100breath and HR at 0 watts

inhale

HR 2nd order linear model

0 50 100 150 200 250 3000

50

100

0 50 100 150 200 250 3000

50

100190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

• “resting” HR• ~40 bpm fluctuations at ~10s period• 100% fluctuations!• Frequency sweep in breathing• Fit well with 2nd order model

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100

0 50 100 150 200 250 3000

50

1000

50

100

@100 w

@0 w

datamodel

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

WattsHR data

Explain differences between • models • model and data

Different subject, 3 data sets

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

HR High mean, low variability

Low mean, high variability

The persistent mysteryYoung, fit, healthy more extreme

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Optimal control

What can we say with this model?

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

VE

Plumbing and chemistry(aerobic)

Organized complexity, circa 1972

Plumbing and chemistry

Conservation laws:Energy and material (small moieties)

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral Lungs, Fp , Rp

Qr Ql

H

VE

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Conservation laws:Energy and material

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql H

Related States

VE

“grey box”

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Optimal control

Consequences?

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Conservation laws

1

ln 0

S T

S d

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infection

traumaenergy

Homeostasis

internal noise

heart beat

breath

errors

BrainO2BPpHGlucoseEnergy storeBlood volume…

controls

Brainheart rateventilationvasodilationcoagulationinflammationdigestionstorage…

external disturbances

infection

traumaenergy

sensornoise

controls

internal noise

heart beatbreath

errorsImplementation

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

O2BPpHGlucoseEnergy storeBlood volume…

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infection

traumaenergy

Homeostasis

internal noise

heart beat

breath

2SpO

BP

watts

tissue

arterial

errors

O2t

Narrow focus

Control

Plant

errors

EV

Control

Plant

2SpO

BP HR

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

controls

EV

Control

Plant

2SpO

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

Close these loops

EV

Control

Plant

2SpO

BP HR

watts

tissue

arterial

errors

Control

peripheral resistance

O2t

controls

Focus

Control

Plant

BP HR

watts

tissue

arterial

O2t

Initial focus

, 2 ,BP O t F w HR

Static model

Brain

Body

BP

HRwatts

O2t

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

, 2 ,BP O t F w HR

Static model

( )HR h w

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

, 2 ,BP O t F w HR

( )HR h w

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

0 50 100 150 20050

100

150

200

Watts

HRBrain

Body

BP

HRwatts

O2t

0.04 0.08 0.12 0.1680

120

160

200

BP

O2t

( )HR h w

, 2 ,BP O t F w HR

2 2 2

( )2

( ) , 2 ,

minh w

p BP q O t r HR

HR h w BP O t F w HR

0 50 100 150 20050

100

150

200

Watts

0.04 0.08 0.12 0.1680

120

160

200

BP

O2t

( )HR h w

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

2 2

( )2min

h wq O t r HR

Penalize BP and HR more

Metabolism only

0 50 100 150 200 250 300 350

0

50

100

150

0 50 100 150 200 250 300 35040

60

80

100

120

140

HR

W

time(sec)

Explain differences between models

??

0.04 0.08 0.12 0.1680

120

160

200

BP

O2t Static model

0.04 0.08 0.12 0.1680

120

160

200

BP

O2t

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

2 2

( )2min

h wq O t r HR

Brain

Body

BP

HRwatts

O2t

Use same weights but put back in dynamics

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Optimal control

What can we say with this model?

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

HR-simBP-sim[O2]v-sim*1000

HR-measurewatt

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

Data and model

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

HR-simBP-sim[O2]v-sim*1000

HR-measure

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

O2t

HR watts

Mechanistic explanation for differences between models

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

O2t

HR watts

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

Penalize BP and HR more

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

BP

HR

0.04 0.08 0.12 0.1680

120

160

200BP

O2t

High mean, low variability

Low mean, high variability

Mechanistic explanation for differences between models

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 40060

80

100

120

140

160

180

HR

2 2 2

( )ˆ2

ˆ0

minh w

p BP q O t r HR

p r r

Penalize BP and HR more

Explain differences between models and data?

Control

Plant

HR

breath

EV

Later

internal noise

0 50 100 150 200 250 3000

50

100

HR

breath

breath

HR

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100 2nd order linear model

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

• “resting” HR• Frequency sweep in breathing• Fit well with 2nd order model• Not a mechanistic model

190 200 210 220 230 240 250 260 270 280

40

50

60

70

80

90

0 50 100 150 200 250 3000

50

100

0 50 100 150 200 250 3000

50

1000

50

100 @100 w

@0 w

data2nd order linear model

Penalize BP and HR more?

Control

Plant

HRbreath

EV

internal noise

Mechanism?

Need mechanical

coupling

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

WattsHR

Different subject, 3 data sets

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

WattsHR 1st order linear model

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

HR 1st order linear model

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

1st order linear models(different parameters)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

1st order linear models(different parameters)

Explain differences between • models • model and data

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

40

60

80

100

120

140

160

180

Explain differences between • models • model and data

Anaerobic

Breathing

Aside on gas variables

• Gas exchange variables are also predictable with simple models

• VO2 is simplest and most predictable

• VCO2-VO2 is most complex and we don’t have first principles model

• Also HR model is bad at high watt levels

0 10 20 300

2

4

0 10 20 30

80

120

160

100

200

300

400HR

dataWattsHR

model

Time(min)

2VO

JP data

0 10 20 30

-1

0

1 2 2VCO VO

• Aerobic models can be way off at high watts• (predict this signal should be constant)• Can still fit with simple “black box” models, but…• Need nonlinear dynamics• Mechanistic models?

• Need anaerobic mechanisms• Control of arterial pH is critical (and hard to model)

aerobic model

2nd order nonlinear fit

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infection

traumaenergy

Homeostasis

internal noise

heart beatbreath

Local metabolic

control

Rs

right heart Rr , Sr

left heart, Rl , Sl

arterialvenous

Feedback Controller

systemic peripheral, Tissues, Fs

Workload,w(t)Workload,w(t)

arterial venous

Pulmonary peripheral

Lungs, Fp , Rp

Qr Ql

H

Related States

VE

Conservation laws

1

ln 0

S T

S d

Conservation laws

Persistent mysteries• Physiological variability and homeostasis• Cryptic variability from cells to organisms to

ecosystems to economies• Statistical mechanics and thermodynamics• Turbulence (coherent structures in shear flows)• Network (cell, brain, Internet,…) architecture• Unified communications, controls, computing

Poor treatment of dynamics, robustness, complexity

top related