improve report 2006 l. debell, k. gebhart, b. schichtel and w. malm

Post on 21-Dec-2015

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IMPROVE Report 2006IMPROVE Report 2006

L. Debell, K. Gebhart, B. Schichtel L. Debell, K. Gebhart, B. Schichtel and W. Malmand W. Malm

IMPROVE Report OutlineIMPROVE Report Outline Section 1: IMPROVE Data summariesSection 1: IMPROVE Data summaries

Chapter 1: Network OverviewChapter 1: Network Overview Chapter 2: IMPROVE-STN Data ComparabilityChapter 2: IMPROVE-STN Data Comparability Chapter 3: Spatial trends in the annual average aerosol Chapter 3: Spatial trends in the annual average aerosol

concentrations concentrations and extinction coefficientsand extinction coefficients Chapter 4: Spatial Variability of monthly patterns in aerosol Chapter 4: Spatial Variability of monthly patterns in aerosol

concentrations and extinction coefficientsconcentrations and extinction coefficients Chapter 5: Trends in aerosol concentrations and extinction Chapter 5: Trends in aerosol concentrations and extinction

coefficientscoefficients Section 2: Special Study SummariesSection 2: Special Study Summaries

Chapter 1: BRAVO Executive Summary and Link to full reportChapter 1: BRAVO Executive Summary and Link to full report Chapter 2: Yosemite Executive Summary and Link to full reportChapter 2: Yosemite Executive Summary and Link to full report Chapter 3: Coarse Mass StudyChapter 3: Coarse Mass Study Chapter 4: IMPROVE Algorithm ReviewChapter 4: IMPROVE Algorithm Review

Section 3: QA StudiesSection 3: QA Studies Chapter 1: Historical Data QA/QC Review Chapter 1: Historical Data QA/QC Review Chapter 2: Denuder StudyChapter 2: Denuder Study

Other workOther work Carbon 12/14 studyCarbon 12/14 study Hygroscopicity of Smoke and Carbon AerosolsHygroscopicity of Smoke and Carbon Aerosols

IMPROVE NetworkIMPROVE Network

Fusion of IMPROVE & STN Fusion of IMPROVE & STN NetworksNetworks

(p.NO3+s.NO3)/2

rela

tive

diff

ere

nce

, d

i(p

.NO

3,s

.NO

3)

0 2 4 6 8

-4-3

-2-1

01

(p.OC+s.OC)/2

rela

tive

diff

ere

nce

, d

i(p

.OC

,s.O

C)

0 5 10 15

-2-1

01

(p.Si+s.Si)/2

rela

tive

diff

ere

nce

, d

i(p

.Si,s

.Si)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.5

0.0

0.5

1.0

(p.S+s.S)/2

rela

tive

diff

ere

nce

, d

i(p

.S,s

.S)

0 1 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

Si OC

S

Relative Errors from Six Collocated IMPROVE Monitors

Average Concentration, (µg/m3)

Rel

ativ

e E

rror

[(x

i – y

i) / (

x i +

y i)/

2]

NO3

Relative Errors from Six Collocated IMPROVE & STN Monitors

IMPROVE S

ST

N S

0 2 4 6 8

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

S

IMPROVE NO3

ST

N N

O3

0 2 4 6 8 10 12 14

-8-6

-4-2

0

NO3IMPROVE Si

ST

N S

i

0 1 2 3 4 5

-2-1

01

2

Si

IMPROVE OC

ST

N O

C.a

dj

0 5 10 15

-10

01

02

03

0 OC(Blank corrected STN OC data)

Average Concentration, (µg/m3)

Rel

ativ

e E

rror

(IM

PR

OV

E –

ST

N)/

Avg

)(

2*)()(_

YX

YXXrdO

))(_var(*2yUncertaint siteXrdO

1-1- Uncertainty Uncertainty

IMPROVEIMPROVEin-networkin-network

IMPROVE-STNIMPROVE-STNcross networkcross network

AlAl 19%19% 33%33%

CaCa 7%7% 28%28%

FeFe 5%5% 21%21%

SiSi 5%5% 11%11%

TiTi 4%4% 25%25%

SS 3%3% 11%11%

SO4SO4 2%2% 5%5%

NO3NO3 5%5% 14%14%

ECEC 7%7% 24%24%

OCOC 7%7% 36%36%

blank-blank-

correctedcorrected STN OC STN OC datadata

NANA 8%8%

Comparability of IMPROVE and STN Measurements

X and Y represent the paired annual means

Where:

Precision in Annual Average Concentrations calculated from collocated data

•Note, these uncertainties do not contain the error due to a systematic bias

IMPROVE Reconstructed Fine MassIMPROVE Reconstructed Fine Mass

IMPROVE & STN Reconstructed Fine IMPROVE & STN Reconstructed Fine MassMass

IMPROVE Ammonium Sulfate MassIMPROVE Ammonium Sulfate Mass

IMPROVE & STN Ammonium Sulfate IMPROVE & STN Ammonium Sulfate MassMass

IMPROVE Organic Carbon MassIMPROVE Organic Carbon Mass

IMPROVE & STN Organic Carbon MassIMPROVE & STN Organic Carbon Mass

IMPROVE Ammonium Nitrate MassIMPROVE Ammonium Nitrate Mass

IMPROVE & STN Ammonium Nitrate IMPROVE & STN Ammonium Nitrate MassMass

IMPROVE Fine Soil MassIMPROVE Fine Soil Mass

IMPROVE & STN Fine Soil MassIMPROVE & STN Fine Soil Mass

IMPROVE Particulate Light ExtinctionIMPROVE Particulate Light Extinction

IMPROVE DeciviewsIMPROVE Deciviews

IMPROVIMPROVE E

Monthly Monthly Fine Fine Mass Mass

BudgetsBudgets

STN STN Monthly Monthly

Fine Fine Mass Mass

BudgetsBudgets

IMPROVE Monthly Fine Mass IMPROVE Monthly Fine Mass BudgetsBudgets

IMPROVE Monthly Fine Mass IMPROVE Monthly Fine Mass BudgetsBudgets

Trends in the Best and Trends in the Best and Worst Haze DaysWorst Haze Days

Clear Day Deciview Trend 1995-2004Clear Day Deciview Trend 1995-2004

Im proving Trend, p<=0.05

Im proving Trend, 0.05<p<=0.15

Degrading Trend, 0.05<p<=0.15

Degrading Trend, p<=0.05

No Trend

Trends in Haze Index (Deciview) on Clearest Days, 1995-2004

06/13/2006

Acadia

Badlands

Bandel ier

Big Bend

Bryce Canyon

Bridger

Brigantine

Canyonlands

Chassahowitzka

Chiricahua

Columbia River

Crater Lake

Dol ly Sods

Gi la Cl i ff

Glacier

Great Basin

Grand Canyon

Great Sand Dunes

Great Smoky Mtns

Guadalupe Mtns

Jarbidge

Lassen Volcanic

Lye Brook

Mammoth CaveMesa Verde

Moosehorn

Mount Rainier

Mt. Zirkel

Okefenokee

Petri fied Forest

Pinnacles

Redwood

Cape Romain

Rocky Mountain

San Gorgonio

SequoiaShenandoah

Shining Rock

Snoqualm ie Pass

T hree Sisters

T onto

Upper Buffalo

Washington

Weminuche

Yel lowstone

Yosemite

Denal i

http://www2.nature.nps.gov/air/Pubs/pdf/gpra/Gpra2005_Report_03202006_Final.pdf

Hazy Day Deciview Trend 1995-2004Hazy Day Deciview Trend 1995-2004

http://www2.nature.nps.gov/air/Pubs/pdf/gpra/Gpra2005_Report_03202006_Final.pdf

Im proving Trend, p<=0.05

Im proving Trend, 0.05<p<=0.15

Degrading Trend, 0.05<p<=0.15

Degrading Trend, p<=0.05

No Trend

Trends in Haze Index (Deciview) on Haziest Days, 1995-2004

06/13/2006

Acadia

Badlands

Bandel ier

Big Bend

Bryce Canyon

Bridger

Brigantine

Canyonlands

Chassahowitzka

Chiricahua

Columbia River

Crater Lake

Dol ly Sods

Gi la Cl i ff

Glacier

Great Basin

Grand Canyon

Great Sand Dunes

Great Smoky Mtns

Guadalupe Mtns

JarbidgeLassen Volcanic

Lye Brook

Mammoth CaveMesa Verde

Moosehorn

Mount Rainier

Mt. Zirkel

Okefenokee

Petri fied Forest

Pinnacles

Redwood

Cape Romain

Rocky Mountain

San Gorgonio

Sequoia

Shenandoah

Shining Rock

Snoqualm ie Pass

T hree Sisters

T onto Upper Buffalo

Washington

Weminuche

Yel lowstone

Yosemite

Denal i

Speciated Coarse MassSpeciated Coarse Mass

Coarse MassCoarse Mass

Fine MassFine Mass

Coarse Mass FractionCoarse Mass Fraction

Fine Mass FractionFine Mass Fraction

Review of Aerosol Optical Review of Aerosol Optical Properties Derived from Properties Derived from IMROVE Particulate and IMROVE Particulate and

Optical DataOptical Data

Inorganic Light Extinction Inorganic Light Extinction Efficiencies Efficiencies

Organic bext efficiency = (density inorganic / density organic) * inorganic bext efficiency

Coarse Mass EfficiencyCoarse Mass Efficiency

•Derived from Transmissometer and Particulate data

Other NPS/CIRA WorkOther NPS/CIRA Work

Seasonal Contemporary and Fossil C Seasonal Contemporary and Fossil C ((g/mg/m33))

The error bars represent the range in six day The error bars represent the range in six day concentrationsconcentrations

Seasonal Fraction Contemporary CarbonSeasonal Fraction Contemporary Carbon

The error bars represent the fraction The error bars represent the fraction contemporary range contemporary range

Urban ExcessUrban Excess Puget Sound, WA - Mount Rainier, WA Puget Sound, WA - Mount Rainier, WA

Puget Sound fossil carbon is primarily due to local Puget Sound fossil carbon is primarily due to local sources during winter and summersources during winter and summer

Summer biogenic carbon is regionally distributedSummer biogenic carbon is regionally distributed ~40% of the winter urban excess is biogenic carbon ~40% of the winter urban excess is biogenic carbon

Not all biogenic carbon is “natural”Not all biogenic carbon is “natural”

Summer

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5T

otal

Car

bon

Fos

sil

Bio

geni

c

Car

bo

n ( g

/m3 )

Excess:

1.8 g/m3

44%

Excess:

1.56 g/m3

77%

Excess:

0.23 g/m3

11%

Winter

0

1

2

3

4

5

6

To

tal

Ca

rbo

n

Fo

ssil

Bio

ge

nic

Ca

rbo

n ( g

/m3)

Excess:

4.1 g/m3

76%

Excess:

2.4 g/m3

98%

Excess:

1.66 g/m3

56%

Urban ExcessUrban ExcessPhoenix, AZ – Tonto, AZPhoenix, AZ – Tonto, AZ

Phoenix fossil carbon is primarily due to local sources Phoenix fossil carbon is primarily due to local sources during winter and summerduring winter and summer

Summer biogenic carbon is regionally distributedSummer biogenic carbon is regionally distributed About half of the winter urban excess is biogenic About half of the winter urban excess is biogenic

carbon carbon Not all biogenic carbon is “natural”Not all biogenic carbon is “natural”

Summer

00.5

11.5

22.5

33.5

44.5

5

Tot

alC

arbo

n

Fos

sil

Bio

geni

c

Car

bo

n (

g/m

3)

Excess:

1.94 g/m3

45%

Excess:

1.53 g/m3

81%

Excess:

0.42 g/m3

17%

Winter

0

2

4

6

8

10

12

Tot

alC

arbo

n

Fos

sil

Bio

geni

c

Car

bo

n ( g

/m3 )

Excess:

9.6 g/m3

89%

Excess:

5.1 g/m3

94%

Excess:

4.5 g/m3

84%

Hygroscopicity of SmokeHygroscopicity of Smoke

Finished

IMPROVE Light Absorbing Carbon MassIMPROVE Light Absorbing Carbon Mass

IMPROVE & STN Light Absorbing IMPROVE & STN Light Absorbing CarbonCarbon

CM

%SO4

% SO4

% OMC

% OMC

% NO3

% NO3

% LAC

% LAC

% Soil

% Soil

SO4 extinction

OMC extinction

NO3 extinction

LAC extinction

Soil extinction

CM extinction

STN

IMPROVE

East

STN

IMPROVE

IMPROVE

STN

Northwest

Southwest

STN

IMPROVE

STN

IMPROVE

East

STN

IMPROVE

Northwest

Southwest

top related