hydrogen r&d at ineel - stanford universityjoseph c. perkowski, ph.d. 208-526-5232 april 27,...

Post on 23-Feb-2021

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Idaho National Engineering and Environmental Laboratory

HYDROGEN R&D AT INEELOverview

Joseph C. Perkowski, Ph.D.

208-526-5232

April 27, 2004

Idaho National Engineering and Environmental Laboratory

2

Long-Term Vision: “The Hydrogen Model Community”• A “Hydrogen City” or “Hydrogen Corridor” • INEEL, SE Idaho or other venue• Emphasis on engineering validation• Variations

– Treasure Valley Clean Air Non-Attainment Support– Hydrogen Yellow Bus for Greater Yellowstone Ecosystem– GHG-free Southern Idaho Corridor

Electrolysis

PrimaryEnergy Sources

Hydrogen Production

Transport Storage Distribution Use

Photo Conversion

or Compression

Electrolysis

Idaho National Engineering and Environmental Laboratory

3

INEEL Hydrogen Initiative Objectives• Achieve a leading position in RD&D of key hydrogen technologies.

– Focus areas:1. Hydrogen production - nuclear energy,2. Hydrogen production - fossil and/or renewable energy,3. Hydrogen infrastructure - bulk hydrogen handling, vehicle fueling

infrastructure, vehicle testing, fuel cell fabrication/testing.• Gain increased stature as a multipurpose laboratory.• Contribute to the nation’s energy security and an improved

environment.

Idaho National Engineering and Environmental Laboratory

4

Nuclear Hydrogen Production Development Plan

Research and DevelopmentEngineering Demonstration50 MW TC5 MW HTE

Lab Scale

Integrated Lab Scale

Pilot Scale5 MW TC0.5 MW HTE

Demonstration

• Thermochemical (TC)• High Temperature Electrolysis (HTE)• Heat Exchangers and BOP• Membrane and Other

2004 2006 2010 2017

Idaho National Engineering and Environmental Laboratory

5

Hydrogen Production Using Nuclear Energy,INEEL Role

• Program integration and management (w/ Sandia)• Integrated laboratory scale tests• Pilot scale tests • Engineering demonstration • Enabling technology research – kinetics/catalysis, materials,

separations, electrolysis

Thermochemical Cycle High Temperature Electrolysis

Idaho National Engineering and Environmental Laboratory

6

Hydrogen Production Using Fossil or Renewable Energy, INEEL Role• Technology Development and Demonstration

– Reformer processes– Modeling – Gasification technology demonstration– Gas cleanup

Idaho National Engineering and Environmental Laboratory

7

Hydrogen Infrastructure/Utilization,INEEL Role• Fueling infrastructure, vehicle testing

• Distributed hydrogen generation– Electrolysis, liquid fuel reforming/cleanup

• Bulk hydrogen separation, delivery, storage • Fuel cell fabrication/demonstrations

8

Idaho National Engineering and Environmental Laboratory

Absorption of CO2 by Aqueous Diethanolamine Solutions in a Vortex Tube Gas-Liquid Contactor and Separator

Participants: INEEL: Daniel S. Wendt,

(208-526-3996, wendds@inel.gov)Michael G. Mc Kellar(208-526-1346, mgq@inel.gov)Anna K. PodgorneyDouglas E. StaceyTerry D. Turner

ConocoPhillips Canada:Kevin T. Raterman

May 6, 2003

Supported by U.S. DOE (DESupported by U.S. DOE (DE--AC07AC07--99ID13727)99ID13727)

Idaho National Engineering and Environmental Laboratory

9

Project Objectives:

• Low capital cost due to compact, simple design• High CO2 capture efficiency

– high efficiency mass transfer– reduced solvent regeneration requirements

• Operationally flexible– turn-down & scale-up with parallel design– easily accommodates variable flow rates and gas

compositions – low maintenance/portable configuration

• Works equally well for physical / chemical absorbents

Idaho National Engineering and Environmental Laboratory

10

Jet type absorbers highly efficientReactor Type kl a ( s-1 x 100)

Packed tower 7

Sieve plate 40

Venturi reactor 25

Bubble column 24

Impinging jet 122

(Herskowits et. al.)

High Shear Jet Absorber

• highly turbulent... large interfacialarea for mass transfer

• multiple jets… impingement zone creates secondary drop breakup / greater area for mass transfer

Idaho National Engineering and Environmental Laboratory

11

High Efficiency Absorption…. acid gas separation

• Co-inject chemical or physical absorbent–– COCO22 + 2R+ 2R22NH NH ↔ RR22NCOONCOO-- + R+ R22NHNH22

++

–– RR22NCOONCOO-- + H+ H22O O ↔ RR22NH + HCONH + HCO33--

–– R designates R designates ––CC22HH44--OHOH• Mass transfer rate ~ f(interfacial area, film thickness)• Vortex tube

– high differential gas-liquid acceleration - small drops– high turbulence - small film thickness

• GOAL … achieve near equilibrium acid gas loading

Idaho National Engineering and Environmental Laboratory

12

Vortex Tube with Liquid Separator

Lorey, et. al., 1998

Cool Gas Outlet8 atm2 °C

Gas Inlet12.6 atm9 °C

Hot Gas Outlet8.6 atm7 °C

Liquid Outlet

J-T Temperature = 5 °C

•Joule-Thomson expansion•near sonic to supersonic velocity

Idaho National Engineering and Environmental Laboratory

13

Scaled Contactor Process-wellhead (~Mscfd) to full gas plant (~MMscfd)-distributed engine (~Mscfd) to centralized power plant (~MMscfd)

Flash

Feed CO2 MixCO2

CO2

StripperAbsorbent

Clean Gas

Parallel Vortex Contactors

(Heat Regeneration if needed)Simple Process Schematic

Idaho National Engineering and Environmental Laboratory

14

Vortex Contactor

Separator TubeSeparator TubeNozzleNozzle

Boroscope / Throttle

Vortex ContactorVortex Contactor

Gas Exit

Liquid inlet

Gas InletLiquid Exit

Idaho National Engineering and Environmental Laboratory

15

Contactor Prototype

60 SLPM @ 100 psia inlet

Idaho National Engineering and Environmental Laboratory

16

Gas - Liquid Loading Tests

• Achieve >95% gas-liquid separation for stoichiometric loading of a 15% volume CO2mixture

• Design parameters– vortex inlet– tube design

• tapered & slotted• stepped with holes

– tube length

Idaho National Engineering and Environmental Laboratory

17

Stepped tube design exceeds gas/liquid separation target

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Inlet Liquid Flow Rate (cm3/minute)

Gas

/Liq

uid

Sepa

ratio

n Ef

ficie

ncy

(%)

0

5

10

15

20

25

30

35

40

45

Liqu

id/G

as R

atio

(mas

s ba

sis)

Separation EfficiencyLiquid/Gas Ratio

Inlet Pressure @ 100 psia

Idaho National Engineering and Environmental Laboratory

18

Stepped tube design exceeds gas/liquid separation target

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000Inlet Liquid Flow Rate (cm3/minute)

Liqu

id O

utle

t Flo

w (c

m3 /m

in)

0

5

10

15

20

25

30

35

40

45

Liqu

id/G

as R

atio

(mas

s ba

sis)

liquid sidegas sideL/G

Inlet Pressure @ 100 psia

Idaho National Engineering and Environmental Laboratory

19

CO2/DEA Baseline Test Apparatus

CO2supply

N2supply

Reg Reg

CO2 FlowController

N2 FlowController

P

T

T P

GasChromato-

graph

P

P

Flowmeter

Liquid

T

Exit HighFlow

Exit LowFlow

TescomCheck Valve

Tescom

Liquid Pump

LiquidCollect-

ionVessel

LiquidCoalescer

VacuumPump

Hood

Atmosphere

Atmosphere

Vortex Tube

Air InletPress.

Air InletTemp.

Hot AirOutletTemp.

Hot ExitPress.

LiquidOutletTemp

LiquidInlet

Press.

ExitPress.

Idaho National Engineering and Environmental Laboratory

20

CO2/DEA Baseline Testing Operation

• Operating Parameters– 100-500 cm3/min liquid flow rate– 15-50 wt% liquid DEA composition– 80-200 psig inlet gas pressure– 5-15 mol% inlet gas CO2 composition– 25-75 slpm inlet gas flow rate (dependent variable)

• Solvent loading and CO2 capture efficiency unsatisfactory in baseline testing

• Diagnostic testing indicated increased residence time required –process modifications necessary

Idaho National Engineering and Environmental Laboratory

21

Process Modifications

• Modifications to process hardware– increase gas-liquid contact time– capacity to adjust the gas-liquid contactor geometric configuration– maintain ability to control the inlet gas pressure and CO2 : DEA

feed stream mole ratio• Modifications to process operating parameters

– 75-350 cm3/min liquid flow rate– 30 wt% liquid DEA composition– 70 slpm inlet gas flow rate– 10 mol% inlet gas CO2 composition– 170-250 psig inlet gas pressure (dependent variable)

Idaho National Engineering and Environmental Laboratory

22

Baseline and Modified Process Configurations

CO2supply

N2supply

Reg Reg

CO2 FlowController

N2 FlowController

P

T

T P

GasChromato-

graph

P

P

Flowmeter

LiquidSupply

T

Exit HighFlow

Exit LowFlow

Check Valve

Liquid Pump

LiquidCollect-

ionVessel

LiquidCoalescer

VacuumPump

Hood

Atmosphere

Atmosphere

Air InletPress.

Air InletTemp.

Hot AirOutletTemp.

Hot ExitPress.

LiquidOutletTemp

LiquidInlet

Press.

ExitPress.

Contactor

TescomBack Press.Regulator

TescomBack Press.Regulator

ModifiedContactor/Separator

CO2supply

N2supply

Reg Reg

CO2 FlowController

N2 FlowController

P

T

T P

GasChromato-

graph

P

P

Flowmeter

Liquid

T

Exit HighFlow

Exit LowFlow

TescomCheck Valve

Tescom

Liquid Pump

LiquidCollect-

ionVessel

LiquidCoalescer

VacuumPump

Hood

Atmosphere

Atmosphere

Vortex Tube

Air InletPress.

Air InletTemp.

Hot AirOutletTemp.

Hot ExitPress.

LiquidOutletTemp

LiquidInlet

Press.

ExitPress.

Idaho National Engineering and Environmental Laboratory

23

Inlet gas pressure as a function of liquid flow rate

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Inlet Liquid Flow Rate (cm3/minute)

Inle

t Gas

Pre

ssur

e (p

sia)

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Inlet Liquid Flow Rate (cm3/minute)

Inle

t Gas

Pre

ssur

e (p

sia)

No Nozzle Fouling Nozzle Fouling Present

Fouling is caused by deposits accumulating in the vortex tube nozzles

Idaho National Engineering and Environmental Laboratory

24

CO2 capture efficiency as function of liquid flow rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

CO

2 Cap

ture

Eff

icie

ncy

(%)

Mo dified Config urat ion 1Mo dified Config urat ion 2

Mo dified Config urat ion 3Mo dified Config urat ion 4Mo dified Config urat ion 5

Mo dified Config urat ion 6Mo dified Config urat ion 7Mo dified Config urat ion 8

Mo dified Config urat ion 9Mo dified Config urat ion 10Mo dified Config urat ion 11Mo dified Config urat ion 12

30 wt% DEA, 10 % CO2, 90 p s ig15wt% DEA, 10 % CO2, 90 p s ig30 wt% DEA, 10 % CO2, MAX ps ig

50wt% DEA, 10% CO2, 10 0 ps ig

Idaho National Engineering and Environmental Laboratory

25

CO2 capture efficiency as function of liquid flow rate (no fouling)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

CO

2 Cap

ture

Eff

icie

ncy

(%)

Modified Configurat ion 1Modified Configurat ion 2Modified Configurat ion 9Modified Configurat ion 10Modified Configurat ion 11Modified Configurat ion 12

Idaho National Engineering and Environmental Laboratory

26

CO2 capture efficiency as function of liquid flow rate (fouling present)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

CO

2 Cap

ture

Eff

icie

ncy

(%)

Modified Co nfig uration 3Mod ified Co nfig uration 4Mod ified Co nfig uration 5Mod ified Co nfig uration 6Mod ified Co nfig uration 7Mod ified Co nfig uration 8

Idaho National Engineering and Environmental Laboratory

27

Solvent loading as function of liquid flow rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

Solv

ent L

oadi

ng [m

ole

CO

2/mol

e D

EA] Modifie d Configura t ion 1

Modif ie d Configura t ion 2

Modif ie d Configura t ion 3

Modif ie d Configura t ion 4

Modif ie d Configura t ion 5

Modif ie d Configura t ion 6

Modif ie d Configura t ion 7

Modif ie d Configura t ion 8

Modif ie d Configura t ion 9

Modif ie d Configura t ion 10

Modif ie d Configura t ion 11

Modif ie d Configura t ion 12

30wt % DEA, 10% CO2, 90 psig

15wt % DEA, 10% CO2, 90 psig

30wt % DEA, 10% CO2, MAX psig

50wt % DEA, 10% CO2, 100 psig

Idaho National Engineering and Environmental Laboratory

28

Solvent loading as function of liquid flow rate (no fouling)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

Solv

ent L

oadi

ng [m

ole

CO

2/mol

e D

EA]

Modified Co nfigurat ion 1Modified Co nfigurat ion 2Modified Co nfigurat ion 9Modified Co nfigurat ion 10Modified Co nfigurat ion 11Modified Co nfigurat ion 12

Idaho National Engineering and Environmental Laboratory

29

Solvent loading as function of liquid flow rate (fouling present)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400 450 500 550 600

Inlet Liquid Flow Rate (cm3/minute)

Solv

ent L

oadi

ng [m

ole

CO

2/mol

e D

EA]

Mo dified Config urat io n 3Mo dified Config urat io n 4Mo dified Config urat io n 5Mo dified Config urat io n 6Mo dified Config urat io n 7Mo dified Config urat io n 8

Idaho National Engineering and Environmental Laboratory

30

Conclusions

• Gas/Liquid separation efficiencies in excess of 95%• Non-optimized vortex tube testing has resulted in

carbon dioxide capture efficiencies of up to 86%• Solvent loading as high as 0.49 moles CO2/mole

DEA

Idaho National Engineering and Environmental Laboratory

31

Future Research/Applications

• Process hardware optimization• Scaled contactor and separator• Additional solvents• Additional CO2 applications• H2S

Idaho National Engineering and Environmental Laboratory

32

References• Herskowits,D.; Herskowits,V.; Stephan, K .; Tamir. A.: Characterization of a two-phase

impinging jet absorber. II. Absorption with chemical reaction of CO2 in NaOH solutions. Chem. Eng. Science 45 (1990) 1281-1287

• Lorey, M., Steinle, J., Thomas, K. 1998. “Industrial Application of Vortex Tube Separation Technology Utilizing the Ranque-Hilsch Effect,” presented at the 1998 SPE European Petroleum Conference, The Hague, Netherlands, October 20-22.

• Chakma, A., Chornet, E., Overend, R. P., and Dawson, W. H., “Absorption of CO2 by Aqueous Diethanolamine (DEA) Solutions in a High Shear Jet Absorber”, The Canadian Journal of Chemical Engineering, Volume 68, August 1990.

• Lee, J. I., Otto, F. D., and Mather, A. E., “Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at High Pressures”, Journal of Chemical and Engineering Data, Vol. 17, No. 4, 1972.

top related