homogenisation techniques dedicated to paper industry ... · j.-f. bloch 1 homogenisation...

Post on 27-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

J.-F. Bloch

1

Homogenisation techniques

dedicated to paper industry:

theory and applications.

Bloch, J.-F.

Paris, 30 septembre 2010

J.-F. Bloch

2

Part I –

Homogeneization theory applied

to paper

Part II –

REV and X-Ray microtomography

Outline

J.-F. Bloch

3

Part I - CONTENT

• I - Introduction

• II - Method presentation

• III - Main Results

• IV - Example

• V - Conclusion

J.-F. Bloch

4

z

y

x

Papier

Feutre

I - INTRODUCTION

Paper

AIM :

Temperature field in paper during hot

pressing

Felt

J.-F. Bloch

5

I - INTRODUCTION (2)

Paper and Felt: deformable porous media

Non saturated: (non /) wetting phases

Complex structure at the pore scale

Macroscopic modelling:

Homogeneization

J.-F. Bloch

6

I - INTRODUCTION (3)

Homogeneization:

microscale to macroscale

J.-F. Bloch

7

II – METHOD

PRESENTATION

The medium is assumed as periodic.

Random media yield similar

macroscopic description modelling.

AURIAULT J.-L. (1991) ”Heterogeneous medium. Is an equivalent macroscopic

description possible?”, Int. J. Engng. Sci., 29, 7, pages 785-795.

J.-F. Bloch

8

II – METHOD

PRESENTATION:

Multiscale expansion method

- without macroscopic prerequisites,

- the macroscopic law,

- the effective parameters,

- the validity domain of the model.

J.-F. Bloch

9

II – METHOD

PRESENTATION:

Multiscale expansion method

pore dimension / sample size

model quality.

J.-F. Bloch

10

II – METHOD

PRESENTATION:

Main steps

1 – Physical phenomena at the microscopic scale.

2 – Two different scales are defined ( ).

3 – Physical Equations at microscopic scale.

4 – The dimensionless parameters are expressed in

function of .

J.-F. Bloch

11

II – METHOD

PRESENTATION:

Main steps (2)5 – Asymptotic expansions in power of are

introduced.

6 – Problems at different orders are solved to

determine the successive approximations of the

variables.

7 – Physical quantities are evaluated from the

dimensionless ones.

J.-F. Bloch

12

II – METHOD

PRESENTATION

• The scale ratio = l / L

• For a paper web, the characteristic lengths

l =10 m and L = 1 mm

= 10-2

• Dimensionless parameters are evaluated in

term of .

J.-F. Bloch

13

II – METHOD

PRESENTATION

lk TT

kkkpkk

kpkTλ.TCρ.v

t

TCρ

k

k

Energy balance for a domain (k = w, a, s):

Flux conservation of heat on the interface:

NX

TN

X

Ti

j

lli

j

kk ijij

Temperatures are continuous on each interface

(no resistance) :

J.-F. Bloch

14

II – METHOD

PRESENTATION

- in k :

Dimensionless variables: X = X*. XR

Dimensionless parameters:

i

kkkke

j

kk

i

kkk

y

TCVP

y

T

yt

TCP

iij

Ny

TN

y

TNi

j

lli

j

kkl k ij

ij

- in kl:

Rw

Ra

λλ

λN

aw

Rw

Rs

swN

R

jij

i

R

p

X

T

X

t

TC

P (R)

(*)

R

jij

i

R

iip

X

T

X

X

TVC

Pe

J.-F. Bloch

15

II – METHOD

PRESENTATION- Reference Values

(J . m-1 . s-1 . K-1) (J . kg-1 . K-1) (kg.m-3)

s Cps s

0.33 1.33.10 3 1.5.10

w Cpw w

0.602 4.18.10 3 10 3

a Cpa a

0.026 10 3 1.23

J.-F. Bloch

16

II – METHOD

PRESENTATION

1O0.548NεO0.043Nswaw λλ

a1-

w

2w

w PεOτλ

lCP

ws

2s

s POC

Pl

J.-F. Bloch

17

II – METHOD

PRESENTATIONEach physical quantity is then looked as:

....φε.φεε.φφφ 332210

Homogenisation process

approximated macroscopic models.

Model accuracies = O( )

The larger the scale separation is,

the better is the result (approximation).

J.-F. Bloch

18

III - MAIN RESULTS

A - Small Péclet number:

diffusion - convection

εOx

xt

TC

j

effij

isw,

dy

I1

swj

kIkjij

effij

sw Ω sΩ wsw, dΩCdΩCΩ

1C

A-1: Pe O ( 2) P = O ( 2)

With :

J.-F. Bloch

19

III – MAIN RESULTS (2)

Ox

T

x0

j

effij

i

A-2 : Pe O ( 2) P O ( 3)

A-3 : Pe = O ( ) P = O ( 2)

Ox

TVC

x

T

xt

TC

ii

j

effij

iw,s

J.-F. BLOCH, J.-L. AURIAULT, (1998) ‘Heat Transfer in Nonsaturated Porous Media:

Modelling by Homogenisation’, TiPM, 30: 301–321.

J.-F. Bloch

20

III - MAIN RESULTS (3)

Ox

TVC

x

T

x0

ii

j

effij

i

A-4 : Pe = O ( ) P O ( 3)

A-5 : Pea,w = O ( ) Pes = O ( 2) P = O ( 2)

Ox

TVC

x

T

xt

TC

i+i

j

effij

iw,s wa

J.-F. Bloch

21

III - MAIN RESULTS (4)

B - 2 : Pe = O (1) P = O ( 2)

B - 3 : Pe = O (1) P O ( 3)

2

iΩi

j

*eff**

isw, εO

x

TCV

x

t

TCε

ij

dVCy

I1

sw,

jIII(0)i

0

l

jIII

ljijeff***

ij

2

iΩi

j

*eff**

i

εOx

TCV

x

xε0

ij

B - Higher Péclet number : dispersion

J.-F. Bloch

22

III - MAIN RESULTS (5)

B - 1 : Pe = O (1) P = O ( )

B - Higher Péclet number : dispersion

2

iΩi

j

*eff*

i

i

2

ΩΩiΩΩΩ

εOx

TCV

x

xt

TχCε

t

TCεC

ij

swIIasw

dVCy

I1

w,s

j

(0)i

0

l

jljij

*eff*ij II

II

J.-F. Bloch

23

III - MAIN RESULTS (6)

Pe O ( -1)

This case is NOT homogeneizable

no equivalent medium exists !

J.-F. Bloch

24

z

y

x

Papier

Feutre

IV - EXAMPLE:

Hot pressing of a paper web

O10O5.0

10.10.10.10#

.V.C.Pe 2

6233p l

ii

j

effij

i x

TVC

x

T

x0

J.-F. Bloch

25

IV – EXAMPLE:

Assumptions

ii

j

effij

i x

TVC

x

T

x0

ii

jijw

i x

TVC

x

TI

x0

ws

ii

jijw

i x

TVC

x

TI

x0

ii

jijsww

i x

TVC

x

TInn

x0

sw O

wpwwapaa VCVC

ns + nw # 1.

J.-F. Bloch

26

IV - EXAMPLE:

Temperature field in paper and felt

Troll = 50 °C

Mach. Speed:10 m.s-1,

Paper thick.: 320 m,

Felt thick.: 2.5 mm,

Nip Length: 2.5 cm.

J.-F. Bloch

27

IV - EXAMPLE

Detail of temperature field in paper during hot

pressing.

PAPER

FELT

Troll = 50 °C

J.-F. Bloch

28

V – CONCLUSIONS

/ Part I• Same microscopic physics, different law

structures, with different effective coefficients.

• Evaluating dimensionless numbers ( ) :

macroscopic model catalogue, their effective

parameters and their validity domains are

obtained.

• Physical characteristic values dedicated to the

studied process.

J.-F. Bloch

29

V - CONCLUSION / Part I (2)

• The equivalent description corresponds to a

medium that reacts globally to the considered

physical excitation like the microscopic medium

studied.

• If the medium cannot be homogenised,

macroscopic properties are not intrinsic to the

media.

• Applicable to any porous medium that satisfies

the microscopic hypotheses in use here.

J.-F. Bloch

30

Part II

3D structure

of Papers

/ VER

(X-Ray Microtomography)

J.-F. Bloch

31

Estimation of paper physical properties

based on synchrotron

X-ray microtomography.

Jean-Francis Bloch

Sabine Rolland du Roscoat

Maxime Decain, Christian Geindreau

J.-F. Bloch

32

Content

(Partie Non présentée)

I. Context

II. Materials and Methods

III. Estimation of paper structure / VER

Deterministic approach

Statistical approach

I. Estimation of paper properties

II. Conclusions and perspectives

J.-F. Bloch

33

I. Context

• Synchrotron X-ray microtomography gives

access to the inner structure of samples at a

micrometric scale

– Quantification of the structure

– Estimation of physical properties

• Comparison to experimental data

J.-F. Bloch

34

I. Position of the problem

• May Physical properties be simulated from

X-Ray microtomography?

• Analysed volume is much smaller than the

characteristic lengths / physical properties?

Problem of the representativity for:

• Porosity and specific surface area

• Effective thermal conductivity and

permeability

J.-F. Bloch

35

Tomographic data

REV ? No …

Yes

Estimation of physical properties

J.-F. Bloch

36

How Long is Long enough

/ structural properties ?

Property

(porosity)

REV

Volume

size

Small samples (mm) !?

II.4. Representative Elementary

VolumeREV

• Definition

J.-F. Bloch

3737

II.4. Applied methods

Two approachs

Deterministic (classical)1

Statistical2

1 W.J. Drugan, J.R. Willis, "A micromecanics-based nonlocal constitutive equation and estimates of

representative volume element size for elastic composites.", J. Mech, Phys Solids, Vol. 44, No 4, 1996,

pp 497-524.

2 T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, "Determination of the size of the representative

volume element for random composites: statistical and numerical approach", International Journal of

Solids and Structures 40, 2003, pp 3647-3679.

J.-F. Bloch

38

III.5. Conclusions

/ Statistical REV

• Estimation of properties on volumes smaller

than the deterministic REV

saving computing time in the case of the

estimation of physical properties

Rolland du Roscoat, S., Decain, M., Thibault, X., Geindreau, C., Bloch J.-F. Estimation of

microstructural properties from synchrotron X-Ray microtomography and determination of

the REV size in paper materials. Acta Materiala, 55(8), 2007, 2841-2850

J.-F. Bloch

39

Content

I. Context

II. Materials and Methods

III. Estimation of paper structure / VER

Deterministic approach

Statistical approach

IV. Estimation of paper properties

V. Conclusions & perspectives

J.-F. Bloch

40

IV.1. Estimation of permeability

• Estimation of tensor of permeability

– No penetration of fluid into fibres

– Pressure gradient is imposed at the interface

– Estimation of the local fluid velocity

– Deducing the permeability

from Darcy Law

Koivu, V., Geindreau, C., Decain, M., Mattila, K., Bloch, J.-F., Kataja, M., Transport

properties of heterogeneous materials combining computerized x-ray micro-tomography and

direct numerical simulations, International Journal of Computational Fluid Dynamics,

23(10), 2010, 713-721

top related