h.m. qnp bejing1 1 hunting -mesic nuclei hartmut machner (fz jülich & university...

Post on 27-Dec-2015

229 Views

Category:

Documents

8 Downloads

Preview:

Click to see full reader

TRANSCRIPT

H.M. QNP Bejing 11

Hunting Hunting -mesic nuclei-mesic nuclei

Hartmut MachnerHartmut Machner(FZ Jülich & University Duisburg-Essen)(FZ Jülich & University Duisburg-Essen)

GEM collaborationGEM collaboration

Outline

• Why are -mesic nuclei interesting?

• Search via production experiments

• Search via Final State Interaction (FSI)

• p+d+3He

• tensor pol. d+d

H.M. QNP Bejing 2

Model for Model for and and ’’ meson in meson in medium (Hirenzaki et al.)medium (Hirenzaki et al.)

Nambu-Jona-Lasinio model with the KMT interaction: explicit breaking of Ua(1) symmetry

Kobayashi, Maskawa Prog.Theor.Phys.44, 1422 (70)Kobayashi, Maskawa Prog.Theor.Phys.44, 1422 (70)G. ’t Hooft, Phys.Rev.D14,3432 (76)G. ’t Hooft, Phys.Rev.D14,3432 (76)

VV(r)(r)

VV’’(r)(r)

VV’’(r)(r)VV(r)(r)

2

VV’’(r)(r)

VV(r)(r)

ggDD : constant : constant ggDD = 0 (w/o KMT term) = 0 (w/o KMT term) ggDD = g = gDD((=0) e=0) e-(-(//0)0) 22

11B

H.M. QNP Bejing 3

Heuristic approachHeuristic approach

• A rather large s-wave -nucleon scattering length lead to the idea of bound -nucleus systems.

• This would be a strong bound system, contrary to pionic atoms (Coulomb bound).

• How to observe?• Recoil free transfer reactions like in hyper-nuclei and in pionic atoms

cases.• Nuclear projectiles:

– d+A3He+[(A-1)]:• Break up protons have same magnetic rigidity as 3He’s. • Large cross section.

– p+A3He+[(A-2)]:• Magnetic rigidity of beam particles differ by a factor of two from 3He’s. • Small cross section.

H.M. QNP Bejing 4

Order of magnitudeOrder of magnitude

HHG

d,3He

L.-C. Liu

H.M. QNP Bejing 5

Missing mass spectroscopyMissing mass spectroscopy

emitted particleemitted particle

Incident particleIncident particle

targettargetmesonmeson

deuteron-holedeuteron-hole

Momentum transfers for Momentum transfers for -mesic nuclei-mesic nuclei formation formation

A A-3

p

3He

p

p-

N *

N *

N *

N *

0

20

40

60

80

100

120

140

160

180

200

q-

mes

ic (

Me V

/ c)

1600 1700 1800 1900p

beam (MeV/c)

B=0 MeV

B=-10 MeV

B=-20 MeV

p+27Al3He+(25Mg)

B=-30 MeV

B=-70 MeV

H.M. QNP Bejing 6

Previous searchesPrevious searches

Pfeiffer et al. PRL: +3Hep0+p+X, 3.5

Sokol et al.: +12Cp++n+X; Both ejectiles are anti-correlated;

<Ep>=300 MeV, <En>=100 MeV

Lieb et al. (p+,p)

Chrien et al. PRL• q=200 MeV/c• inclusive

H.M. QNP Bejing 7

27 3 25

0*

( can not decay, becau

(1535

se its bound!)

)

p Al He Mg

n N n

p

p

-

ReactionsReactions

3He in BIG KARL, all beam momentum

p-p back to back in ENSTAR

3-fold coincidence + 3 more constraints!

H.M. QNP Bejing 8

ENSTAR

3

2 2

dp H

Ae

A

- -

0*

0(1535)

p

nN N

p

n

pp

pp

-

Detector

TOF

H.M. QNP Bejing 9

ENSTAR DetectorENSTAR Detector

NIM A 596 (08) 31

H.M. QNP Bejing 10

Mounting phaseMounting phase

H.M. QNP Bejing 11

Proton + Aluminium target

Particle identification with BK focal plane detectors

(high threshold cuts light particles)

Event of interest:Two correlated particles: 5+2/3=7/8 fold coincidencePion leaves the detector: outer layer firesProton stopped in the middle layer

H.M. QNP Bejing 12

Two spectrometer settings

H.M. QNP Bejing 13

Time- andTime- and 3 3He spectraHe spectra

100

101

102

103

104

105

cou n

ts /

4 M

eV

-30 -20 -10 0BE (MeV)

23.79 23.80 23.81 23.82MM (GeV)

3He in BK+ENSTAR+bb

3He in BK+ENSTAR

only 3He in BK

0

10

20

30

0

200

400

600

800

cou

nts

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000time (arb. units)

FP ENSTAR

FP (3He) ENSTAR

FP (3He) ENSTARall gates

H.M. QNP Bejing 14

η-nucleus formation cross section estimation

L ≈ 5*1035 cm-2 ≈75 hours of the beam for each setting

≈ 5 * 108 particles per second on the target1 mm Aluminium target

efficiency: 0.70±0.07 loss due to geometry and cuts: Bump = 50 pb

εbranch = 1/3

L

N

exp. 152 54(stat.) 21(syst.) pb N* p N (2Tz+1)

N0* p- p 2

N0* p0 n 1

N+* p+ n 2

N+* p0 p 1

H.M. QNP Bejing 15

Summed dataSummed data

PRC 70 (2009) 012201(R)

H.M. QNP Bejing 16

2 2 2 2iB B

f

p df f FSI f FSI

p d

20

11

12f f

FSIi a p a r p

-

classical description in „a“ and „r0“

alternative description

- final state interaction

Tacid assumption:

s-wave, and then d/d=/4p

Sign convention: Goldberger

H.M. QNP Bejing 17

Binding conditionsBinding conditions

Quasi-bound requires:

• Im(aA) > 0 from unitarity

• |Im(aA)| < |Re(aA)| to have a pole in the negative energy half plane

•Re(aA) < 0 to have a bound state, but

|FSI|2 Re(aA)2

|Q0(3He)|<|Q0(4He)|

Otherwise: virtual (unphysical) state

H.M. QNP Bejing 18

Total cross sections

100

200

300

400

500

600

700

800

(n

b)

0

100

200

300

400

500

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 = p/m

-2 0 2 4 6 8 10 12 (MeV)

BilgerAdamRausmannMersmannSmyrskiMeyerBanaigsLoireleuxKirchnerGEM *0.73

FSI (Sibirtsev)

pd3He

H.M. QNP Bejing 19

3He- production amplitude

T. Mersmann et al., PRL 98 (07) 242301

3

0.1 1.00.5 0.910.7 0.8 1.5 2.6 fm

Hea i

- -

0.20 0.01.9 0.1 2.1 0.2 fmr i

-

COSY11 + old data <50 MeV/c

no need for effective range

PLB 649 (07)258

3 2.9 2.7 3.2 1.8 fmHe

a i 0| | 0.30 MeVQ

H.M. QNP Bejing 20

dd

Eur. Phys. J. A 26 (2005) 421

H.M. QNP Bejing 21

GEM ddGEM dd

beam direction

point

target

Luminosity Right Scintillators

Luminosity Left Scintillators

M detector

In order to extract s-wave production, tensor polarised deuteron beam

Target area:

M detector

beam directiontarget

point

H.M. QNP Bejing 22

Raw dataRaw data

(p+1)/2

(p-1)/2

-(p+1)/2

-(p-1)/2

H.M. QNP Bejing 23

Unpolarised cross sectionsUnpolarised cross sections

Exp. a0 a2 a4

ANKE1.30

±0.18

-0.79

±0.19

GEM1.27

±0.03

-0.29

±0.06

1.65

±0.07

s, p and d-waves!

H.M. QNP Bejing 24

Excitation FunctionExcitation Function

Same momentum range as in p+d, but less data points. Cross section less than 5%!

How to extract s-wave?

H.M. QNP Bejing 25

Polarised beamPolarised beam

dp elastic scattering

(radians)0 1 2 3 4 5 6

un

po

l/N

po

lN

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

= +1)zz

] (p+0.019cos21.00[1+0.0011+0.0354cos= -1)

zz] (p-0.016cos21.02[1-0.0007+0.0352cos

H.M. QNP Bejing 26

H.M. QNP Bejing 27

Better fit than partial wave amplitudes (s, p, 2d waves), because less parameters (4 instead of 7)

Angular dependence due to s-d interference

H.M. QNP Bejing 28H. M., Mumbai, Febr. 09 28

FinalFinalresultresult

NP A 821 (2009) 193

PWA

spin ampl.

H.M. QNP Bejing 29

Final resultFinal result

scatt. length

effective range

30 0| | 4MeV > | ( He) |Q Q

H.M. QNP Bejing 30

Summary Search for -mesic nuclei employing recoil free kinematics. We see an enhancement in the spectra after detecting 3 final

particles: 3He at zero degree and p-+p back to back.

25Mgbound state: BE13 MeV, FWHM10 MeV 5 effect We have measured angular distributions of cross sections and

tensor analysing power for the reaction dd at 16.6 MeV above threshold

s-wave strength could be extracted s-wave strength of other experiments (Willis et al., Wronska et

al.) extracted FSI shows Im a (-) = 0.0(5) fm. This indicates a small

absorption because the nucleons are strongly bound The -nucleus levels in heavy nuclei thus might be fairly

narrow.

H.M. QNP Bejing 31

The GEM CollaborationThe GEM CollaborationM. Abdel-Barya, S. Abdel-Samad a, A. Budzanowski d, A. Chatterjee i, J. Ernst g, P. Hawranek a,c, R.

Jahne, V. Jhai, S. Kailasi, K. Kilian a, Da. Kirilova,h, Di. Kirilovh, S. Kliczewski d, D. Kolev f,M. Kravcikova m, T. Kutsarova e, M. Lesiaka,c, J. Lieb j, H. Machner a, A. Magiera c, G. Martinska l,

H. Nann k, N. Piskinovh, L. Pentchev e, D. Protic a, J. Ritman a, P. von Rossen a, B. J. Roy i, P. Shuklai,R. Siudak d, I. Sitnikh, M. Ulicny a,l, R. Tsenov f, J. Urban l, G. Vankovaa,f, C. Wilkinn, G. Wüstnerb

a. Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany b. Zentrallabor für Elektronik, Forschungszentrum Jülich, Jülich, Germany

c. Institute of Physics, Jagellonian University, Krakow, Poland d. Institute of Nuclear Physics, Pan, Krakow, Poland

e. Institute of Nuclear Physics and Nuclear Energy, Sofia, Bulgaria f. Physics Faculty, University of Sofia, Sofia, Bulgaria

g. Institut für Strahlen- und Kernphysik der Universität Bonn, Bonn, Germany h. LHE, JINR, Dubna, Russia

i. Nuclear Physics Division, BARC, Bombay, India j. Physics Department, George Mason University, Fairfax, Virginia, USA

k. IUCF, Indiana University, Bloomington, Indiana, USA l. P. J. Safarik University, Kosice, Slovakia

m. Technical University, Kosice, Kosice, Slovakia n. Department of Physics & Astronomy, UCL, London, U.K.

H.M. QNP Bejing 32

Thank you for your attention

H.M. QNP Bejing 33

FSIFSI

H.M. QNP Bejing 34

Excitation function:dp→3He

2/nfree=0.82

top related