göteborg january 28, 2019 long-time asymptotics jonatan ... · jonatan lenells kth royal institute...

Post on 24-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Göteborg January 28, 2019

Long-time asymptotics for nonlinear integrable PDEs

Jonatan LenellsKTH Royal Institute of Technology

Outline

‣ sine-Gordon equation

‣ Integrable systems

‣ Solitons

‣Asymptotics

Outline

‣ sine-Gordon equation

‣ Integrable systems

‣ Solitons

‣Asymptotics

utt � uxx + sinu = 0

u(x, t) real-valued

sine-Gordon equation

utt � uxx + sinu = 0

u(x, t) real-valued

sine-Gordon equation

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

utt � uxx + sinu = 0

u(x, t) real-valued

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

sine-Gordon equation

Oskar KleinBorn: 1894 MörbyDied: 1977 Stockholm

utt � uxx + sinu = 0

u(x, t) real-valued

sine-Gordon equation

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

‣ Discovered as the “Gauss-Codazzi” equationfor surfaces of constant negative curvature (1862)

utt � uxx + sinu = 0

u(x, t) real-valued

‣ Model in condensed matter (1932)

sine-Gordon equation

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

‣ Discovered as the “Gauss-Codazzi” equationfor surfaces of constant negative curvature (1862)

utt � uxx + sinu = 0

u(x, t) real-valued

‣ Model in condensed matter (1932)‣ Magnetic flux propagation in Josephson junctions

sine-Gordon equation

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

‣ Discovered as the “Gauss-Codazzi” equationfor surfaces of constant negative curvature (1862)

utt � uxx + sinu = 0

u(x, t) real-valued

‣ Model in condensed matter (1932)‣ Magnetic flux propagation in Josephson junctions‣ Nonlinear optics

sine-Gordon equation

‣ Name is a pun on “Klein-Gordon”:utt � uxx + u = 0 (Klein-Gordon equation, 1926)

‣ Discovered as the “Gauss-Codazzi” equationfor surfaces of constant negative curvature (1862)

‣ First equation for which Bäcklund transformationswere discovered (~1880).

sine-Gordon equation

‣ First equation for which Bäcklund transformationswere discovered (~1880).

Albert Victor BäcklundBorn: 1845 HöganäsDied: 1922 Lund

Rector Lund University 1907-1909

sine-Gordon equation

sine-Gordon in the quarter plane

utt � uxx + sinu = 0

x

t

u(x, t) real-valued

u0(x) = u(x, 0)u1(x) = ut(x, 0)

g0(t) = u(0, t) utt � uxx + sinu = 0

x

t

sine-Gordon in the quarter plane

u(x, t) real-valued

Asymptotics

Sector I(rapid decay)Sect

or II (

transi

tion)

Sector III(solitons & radiation)

x=t

x

t

(with L. Huang)

Outline

‣ sine-Gordon equation

‣ Integrable systems

‣ Solitons

‣Asymptotics

Integrable systemsIn finite dimensions:

is completely integrable if there exist independentPoisson commuting conserved quantities

(qi =

@H

@pi

pi = �@H

@qi

n

i = 1, . . . , n,

A Hamiltonian system

Integrable systemsIn finite dimensions:

is completely integrable if there exist independentPoisson commuting conserved quantities

(qi =

@H

@pi

pi = �@H

@qi

n

i = 1, . . . , n,

Origin of name: Solution can be found by integration

A Hamiltonian system

Integrable systemsExamples include:

‣ The harmonic oscillator

Integrable systemsExamples include:

‣ The harmonic oscillator

q<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Integrable systemsExamples include:

‣ Two-body problem in Newtonian mechanics

Integrable systemsExamples include:

‣ n-dimensional body rotating about its center of mass

Integrable systemsExamples include:

‣ n-dimensional body rotating about its center of mass

‣ Lagrange and Kovalevskaya tops

Integrable systems

Action-Angle variablesOriginal variables {Ji, ✓i}ni=1{pi, qi}ni=1

Nonlinear time evolution Linear time evolution

Integrable systems

{pi(0), qi(0)}ni=1

Possible solution strategy:

initial data

Integrable systems

{pi(t), qi(t)}ni=1

{pi(0), qi(0)}ni=1

Possible solution strategy:

initial data

?

Integrable systems

{pi(t), qi(t)}ni=1

{pi(0), qi(0)}ni=1 {Ji(0), ✓i(0)}ni=1

Possible solution strategy:

Change variablesinitial data

?

Integrable systems

{pi(t), qi(t)}ni=1

{pi(0), qi(0)}ni=1 {Ji(0), ✓i(0)}ni=1

Possible solution strategy:

Change variables

Ji(t) = Ji(0)

✓i(t) = ✓i(0) + vit

initial data

? Lineartime evolution

Integrable systems

{pi(t), qi(t)}ni=1

{pi(0), qi(0)}ni=1 {Ji(0), ✓i(0)}ni=1

Possible solution strategy:

Change variables

Ji(t) = Ji(0)

✓i(t) = ✓i(0) + vit

Change back

initial data

? Lineartime evolution

Integrable systems

{pi(t), qi(t)}ni=1

{pi(0), qi(0)}ni=1 {Ji(0), ✓i(0)}ni=1

Possible solution strategy:

Change variables

Ji(t) = Ji(0)

✓i(t) = ✓i(0) + vit

Change back

Easy!Hard!

initial data

? Lineartime evolution

Integrable systems

What about infinite-dimensional

systems?

xu0(x) = u(x, 0)

satisfies anu(x, t)integrable PDE for t > 0

Initial value problem

Inverse Scattering TransformPossible solution strategy:

initial datau0(x)

Possible solution strategy:

initial data

?u0(x)

u(x, t)

nonlinearPDE

Inverse Scattering Transform

Possible solution strategy:

Change variables

?r(k)

{kj , cj}N1

u(x, t)

initial datau0(x)

nonlinearPDE

Inverse Scattering Transform

Possible solution strategy:

Change variables

Lineartime

?r(k)

{kj , cj}N1

u(x, t)

r(k)ei✓(k)t

{kj , cjei✓(kj)t}N1

initial datau0(x)

nonlinearPDE

evolution

Inverse Scattering Transform

Possible solution strategy:

Change variables

Change back

?r(k)

{kj , cj}N1

u(x, t)

r(k)ei✓(k)t

{kj , cjei✓(kj)t}N1

initial datau0(x)

nonlinearPDE

Lineartime evolution

Inverse Scattering Transform

Possible solution strategy:

Change variables

Change back

?r(k)

{kj , cj}N1

u(x, t)

r(k)ei✓(k)t

{kj , cjei✓(kj)t}N1

initial datau0(x)

nonlinearPDE

Lineartime evolution

Inverse Scattering Transform

Reflectioncoefficient

Possible solution strategy:

“Nonlinear” Fourier

?r(k)

{kj , cj}N1

u(x, t)

r(k)ei✓(k)t

{kj , cjei✓(kj)t}N1

initial datau0(x)

transform

Inverse “nonlinear”Fourier transform

nonlinearPDE

Lineartime evolution

Inverse Scattering Transform

Reflectioncoefficient

Possible solution strategy:⇢

Inverse Scattering

?r(k)

{kj , cj}N1

u(x, t)

r(k)ei✓(k)t

{kj , cjei✓(kj)t}N1

initial datau0(x)

nonlinearPDE

Lineartime evolution

Transform

Inverse Scattering Transform

“Nonlinear” Fouriertransform

Reflectioncoefficient

Initial-value problems for integrable PDEs

‣ 1967 - KdV equation

Inverse Scattering Transform

can be solved via the Inverse Scattering Transform

Initial-value problems for integrable PDEs

‣ 1967 - KdV equation

‣ 1972 - Nonlinear Schrödinger equation

Inverse Scattering Transform

can be solved via the Inverse Scattering Transform

Initial-value problems for integrable PDEs

‣ 1967 - KdV equation

‣ 1972 - Nonlinear Schrödinger equation‣ 1973 - Sine-Gordon equation

Inverse Scattering Transform

can be solved via the Inverse Scattering Transform

can be solved via the Inverse Scattering TransformInitial-value problems for integrable PDEs

‣ 1967 - KdV equation

‣ 1972 - Nonlinear Schrödinger equation‣ 1973 - Sine-Gordon equation

......

Inverse Scattering Transform

What is an integrable system?

In infinite dimensions:

‣ 1991 book “What is integrability?” Editor V. E. Zakharov

What is an integrable system?

In infinite dimensions:

‣ 1991 book “What is integrability?” Editor V. E. Zakharov

‣ Percy Deift 2017: A problem is integrable if youcan solve it.

Outline

‣ sine-Gordon equation

‣ Integrable systems

‣ Solitons

‣Asymptotics

Solitons‣ First discovered by John Scott Russell 1834

Solitons‣ First discovered by John Scott Russell 1834

‣ Very stable

Solitons‣ First discovered by John Scott Russell 1834

‣ Very stable

‣ Particle-like (origin of the name)

Solitons‣ First discovered by John Scott Russell 1834

‣ Interact (almost) linearly although equation

‣ Very stable

‣ Particle-like (origin of the name)

is nonlinear

Solitons

Solitons

Solitons

sine-Gordon 1-soliton

sine-Gordon 1-soliton

sine-Gordon 1-soliton

sine-Gordon 1-soliton

sine-Gordon 1-soliton

sine-Gordon 1-solitonu(x, t) = 4 arctan

⇣e� x�vtp

1�v2

� = 1

v 2 (�1, 1)Velocity

2⇡

0 x

u

sine-Gordon 1-solitonu(x, t) = 4 arctan

⇣e� x�vtp

1�v2

� = 1

� = �1

v 2 (�1, 1)Velocity

2⇡

0 x

u

2⇡

0 x

u

kink

antikink

sine-Gordon 1-solitonu(x, t) = 4 arctan

⇣e� x�vtp

1�v2

� = 1

� = �1

v 2 (�1, 1)Velocity

2⇡

0 x

u

2⇡

0 x

uTopological charge

kink

antikink

sine-Gordon solitons

x

2⇡

u(x, t)

sine-Gordon solitons

x

kink

2⇡

u(x, t)

kink

kink

sine-Gordon solitons

x

kink

antikink

2⇡

u(x, t)

kink

kink

sine-Gordon solitons

x

breather

kink

antikink

2⇡

u(x, t)

kink

kink

sine-Gordon solitons

x

breather

kink

antikink

2⇡

Topological charge(or winding number)

u(x, t)

= 2

kink

kink

Outline

‣ sine-Gordon equation

‣ Integrable systems

‣ Solitons

‣Asymptotics

xu0(x) = u(x, 0)

satisfies anu(x, t)integrable PDE

Initial value problem

xu0(x) = u(x, 0)

Initial value problemInverse Scattering Transform [GGKM 1967, …]

xu0(x) = u(x, 0)

Initial value problem

r(k)Reflection coefficient

Inverse Scattering Transform [GGKM 1967, …]

Initial-boundary value problem

t

u0(x) = u(x, 0)

u(0,t)=

g 0(t)

x

The unified transform method [Fokas 1997, …]

Initial-boundary value problem

t

r(k)

u0(x) = u(x, 0)

u(0,t)=

g 0(t)

x

The unified transform method [Fokas 1997, …]

Initial-boundary value problemThe unified transform method [Fokas 1997, …]

t

r1(k)

r(k)

u0(x) = u(x, 0)

u(0,t)=

g 0(t)

x

Initial-boundary value problem

Solution can be found by solving au(x, t)

Riemann-Hilbert problem

Riemann-Hilbert problemCONSTRUCTION OF SOLUTIONS AND ASYMPTOTICS 7

1�1

D1

D2

D3

D4

Figure 2. The contour � and the domains {Dj}41 in the complex k-plane.

2. Spectral functions

This section introduces several spectral functions and reviews how these functionscan be combined to set up a RH problem suitable for solving equation (1.1) in thequarter plane.

2.1. Lax pair. Equation (1.1) is the compatibility condition of the Lax pair(µx +

i

4(k � 1k)[�3, µ] = Q(x, t, k)µ,

µt +i

4(k + 1k)[�3, µ] = Q(x, t,�k)µ,

(2.1)

where k 2 C is the spectral parameter, µ(x, t, k) is a 2⇥2-matrix valued eigenfunction,and Q is defined by

Q(x, t, k) = Q0(x, t) +Q1(x, t)

k, (2.2)

with

Q0(x, t) = � i(ux + ut)

4�2, Q1(x, t) =

i sin u

4�1 +

i(cosu� 1)

4�3.

2.2. Spectral functions. Let m � 1, n � 1, Nx 2 Z, and Nt 2 Z be integers.Let u0(x), u1(x), g0(t), and g1(t) be functions satisfying the following regularity anddecay assumptions (see (1.4)):

8><

>:

(1 + x)n(u0(x)� 2⇡Nx) 2 L1([0,1)),

(1 + x)n@iu0(x) 2 L1([0,1)), i = 1, . . . ,m+ 2,

(1 + x)n@iu1(x) 2 L1([0,1)), i = 0, 1, . . . ,m+ 1,

(2.3a)

and 8><

>:

(1 + t)n(g0(t)� 2⇡Nt) 2 L1([0,1)),

(1 + t)n@ig0(t) 2 L1([0,1)), i = 1, . . . ,m+ 2,

(1 + t)n@ig1(t) 2 L1([0,1)), i = 0, 1, . . . ,m+ 1.

(2.3b)

Riemann-Hilbert problem:M(x, t, k) k 2 C \ �

M = I +O(1/k) k ! 1

is analytic for

asM+ = M�J

(�a.e. on

complex k-plane

Jump matrixCONSTRUCTION OF SOLUTIONS AND ASYMPTOTICS 11

satisfies the normalization condition limk!1 M(x, t, k) = I as well as the jump con-dition M+ = M�J across the contour � = R [ {|k| = 1}, where the jump matrix Jis given by

J(x, t, k) =

8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1 0

�h(k)e2i✓ 1

!, k 2 D1 \ D2,

1 �r(k)e�2i✓

�r(k)e2i✓ 1 + |r(k)|2

!, k 2 D2 \ D3,

1 �h(k)e�2i✓

0 1

!, k 2 D3 \ D4,

1 + |r1(k)|2 r1(k)e�2i✓

r1(k)e2i✓ 1

!, k 2 D4 \ D1.

(2.18)

In particular, if a(k) and d(k) have no zeros, then M satisfies the RH problem(M(x, t, ·) 2 I + E2(C \ �),M+(x, t, k) = M�(x, t, k)J(x, t, k) for a.e. k 2 �.

(2.19)

Roughly speaking, the functions r1(k) and r(k) play the roles of ‘reflection coe�-cients’ for the initial half-line {x � 0, t = 0} and for the union {x � 0, t = 0}[ {x =0, t � 0} of the initial half-line and the boundary, respectively.

3. Main results

This section presents the four main theorems of the paper in the pure radiationcase. The theorems are extended to the case when solitons are present in Section 10.

3.1. Construction of solutions.

Assumption 3.1. Suppose r1 : R ! C and h : @D2 ! C are continuous functionswith the following properties:

(a) There exist complex constants {r1,j}2j=1 such that

r1(k) =r1,1k

+r1,2k2

+O⇣ 1

k3

⌘, |k| ! 1, k 2 R. (3.1)

(b) r1(k) and h(k) obey the symmetries

r1(k) = r1(�k), h(k) = h(�k). (3.2)

(c) The function r : [�1, 1] ! C defined by r(k) = r1(k) + h(k) satisfies r(±1) = 0and r(k) = O(k3) as k ! 0.

Theorem 3.2 (Construction of quarter-plane solutions). Let r1 : R ! C and h :@D2 ! C be functions satisfying Assumption 3.1. Define the jump matrix J(x, t, k)by (2.18). Then the RH problem (2.19) has a unique solution for each (x, t) 2[0,1)⇥ [0,1). Moreover, the nontangential limit

m(x, t) :=\limk!0

M(x, t, k) (3.3)

✓ =1

4

✓k � 1

k

◆x+

1

4

✓k +

1

k

◆t

Jump matrixCONSTRUCTION OF SOLUTIONS AND ASYMPTOTICS 11

satisfies the normalization condition limk!1 M(x, t, k) = I as well as the jump con-dition M+ = M�J across the contour � = R [ {|k| = 1}, where the jump matrix Jis given by

J(x, t, k) =

8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1 0

�h(k)e2i✓ 1

!, k 2 D1 \ D2,

1 �r(k)e�2i✓

�r(k)e2i✓ 1 + |r(k)|2

!, k 2 D2 \ D3,

1 �h(k)e�2i✓

0 1

!, k 2 D3 \ D4,

1 + |r1(k)|2 r1(k)e�2i✓

r1(k)e2i✓ 1

!, k 2 D4 \ D1.

(2.18)

In particular, if a(k) and d(k) have no zeros, then M satisfies the RH problem(M(x, t, ·) 2 I + E2(C \ �),M+(x, t, k) = M�(x, t, k)J(x, t, k) for a.e. k 2 �.

(2.19)

Roughly speaking, the functions r1(k) and r(k) play the roles of ‘reflection coe�-cients’ for the initial half-line {x � 0, t = 0} and for the union {x � 0, t = 0}[ {x =0, t � 0} of the initial half-line and the boundary, respectively.

3. Main results

This section presents the four main theorems of the paper in the pure radiationcase. The theorems are extended to the case when solitons are present in Section 10.

3.1. Construction of solutions.

Assumption 3.1. Suppose r1 : R ! C and h : @D2 ! C are continuous functionswith the following properties:

(a) There exist complex constants {r1,j}2j=1 such that

r1(k) =r1,1k

+r1,2k2

+O⇣ 1

k3

⌘, |k| ! 1, k 2 R. (3.1)

(b) r1(k) and h(k) obey the symmetries

r1(k) = r1(�k), h(k) = h(�k). (3.2)

(c) The function r : [�1, 1] ! C defined by r(k) = r1(k) + h(k) satisfies r(±1) = 0and r(k) = O(k3) as k ! 0.

Theorem 3.2 (Construction of quarter-plane solutions). Let r1 : R ! C and h :@D2 ! C be functions satisfying Assumption 3.1. Define the jump matrix J(x, t, k)by (2.18). Then the RH problem (2.19) has a unique solution for each (x, t) 2[0,1)⇥ [0,1). Moreover, the nontangential limit

m(x, t) :=\limk!0

M(x, t, k) (3.3)

All (x,t)-dependencein exponential

✓ =1

4

✓k � 1

k

◆x+

1

4

✓k +

1

k

◆t

Method of nonlinear steepest descent[Deift & Zhou 1993, …]

is small when is negative

Asymptotics for sine-Gordon

et�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Method of nonlinear steepest descent[Deift & Zhou 1993, …]

is small when is negative

Asymptotics for sine-Gordon

et�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Method of nonlinear steepest descent[Deift & Zhou 1993, …]

steepest descentcontouris small when is negative

Asymptotics for sine-Gordon

et�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Method of nonlinear steepest descent[Deift & Zhou 1993, …]

Main contributionfrom here

steepest descentcontouris small when is negative

Asymptotics for sine-Gordon

et�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re�(k)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� < 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Re� > 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Asymptotics for sine-Gordon

Asymptotics for sine-Gordon

Expect main

from herecontribution

Asymptotics for sine-Gordon

u0(x) = u(x, 0)u1(x) = ut(x, 0)

g0(t) = u(0, t) utt � uxx + sinu = 0

x

t

Asymptotics for sine-Gordon

u0(x) = u(x, 0)u1(x) = ut(x, 0)

g0(t) = u(0, t) utt � uxx + sinu = 0

x

t

t ! 1as

x ! 1as

g0 ! 2⇡Nt

u0 ! 2⇡Nx

Asymptotics for sine-Gordon

Nx, Nt integers

Asymptotics for sine-Gordon

Sector I(rapid decay)Sect

or II (

transi

tion)

Sector III(solitons & radiation)

x=t

x

t

Theorem [Asymptotics]Under the assumptions … , the sG solution u(x, t)

u(x, t) =

(usol(x, t; j) + uconst(j) + (�1)Nurad(x, t), ⇣ 2 (vj � ✏, vj + ✏),

uconst(j) + (�1)Nurad(x, t), ⇣ 2 (vj + ✏, vj�1 � ✏),

In Sector I: u(x, t) = O�x�N

In Sector II: u(x, t) = O�(1� x/t)N + t

�N�

In Sector III:

has the following asymptotics:

Results for sG (with L. Huang)

uconst(j) = �2⇡j�1X

i=1

sgn(Im ci)

where

usol(x, t; j) is a kink/antikink of speed if �j 2 iR :

usol(x, t; j) = �4 arctan

⇢e��j(x�vjt)Im cj

2|�j |

j�1Y

l=1

�����j � �l

�j � �l

����2�

,

vj

urad(x, t) = �2

s2(1 + k20)⌫

k0tsin ↵

Results for sG (with L. Huang)

uconst(j) = �2⇡j�1X

i=1

sgn(Im ci)

where

usol(x, t; j) is a kink/antikink of speed if �j 2 iR :

usol(x, t; j) = �4 arctan

⇢e��j(x�vjt)Im cj

2|�j |

j�1Y

l=1

�����j � �l

�j � �l

����2�

,

vj

soliton-radiationinteraction

urad(x, t) = �2

s2(1 + k20)⌫

k0tsin ↵

Results for sG (with L. Huang)

uconst(j) = �2⇡j�1X

i=1

sgn(Im ci)

where

usol(x, t; j) is a kink/antikink of speed if �j 2 iR :

usol(x, t; j) = �4 arctan

⇢e��j(x�vjt)Im cj

2|�j |

j�1Y

l=1

�����j � �l

�j � �l

����2�

,

vj

soliton-solitoninteractionurad(x, t) = �2

s2(1 + k20)⌫

k0tsin ↵

Results for sG (with L. Huang)

soliton-radiationinteraction

66 CONSTRUCTION OF SOLUTIONS AND ASYMPTOTICS

�1

�2�3

�4

�5

�6�7�8

Re k1�1

x

t

⇣=

v 4⇣=v 2

=v 3

⇣=v 1

⇣=1

Figure 18. The left figure displays a possible distribution of the �j. The associatedsine-Gordon solution is dominated asymptotically by solitons traveling in the threedirections shown on the right. The line ⇣ = 1 is also shown (dashed). The pureimaginary poles �1 and �4 generate kinks/antikinks traveling with speeds v1 and v4,respectively. The pair (�2,�3 = ��2) generates a breather traveling with speed v2 =v3. Only those �j with |�j| < 1 generate solitons.

imaginary pole �j with |�j| < 1 gives rise to a kink/antikink, whereas each pair(�j,��j) with |�j| < 1 gives rise to a breather. The speeds of these solitons satisfy

0 < v⇤ · · · v2 v1 < 1

with strict inequality vj+1 < vj except when �j+1 = ��j.

Theorem 10.9 (Asymptotics of quarter-plane solutions). Let r1 : R ! C and h :D2 ! C satisfy Assumption 3.5, let {�j}N1 ⇢ C+\� satisfy Assumption 10.8, and let{cj}N1 be nonzero complex numbers satisfying (10.13). Let u(x, t) be the associatedsine-Gordon quarter-plane solution of Theorem 10.5.Then u 2 C1([0,1)⇥ [0,1),R) and there exists a choice of the branch of arg in

(3.4) such that u(x, 0) ! 0 as x ! 1. For this choice of branch, u(x, t) satisfiesthe asymptotic formulas (3.8a) and (3.8b) in Sectors I and II. In Sector III, theasymptotics of u(x, t) is given by adding the multi-soliton determined by {�j, cj}N1 tothe radiation solution of Theorem 3.6. More precisely, for each 1 j ⇤ and each✏ > 0, the asymptotics in the narrow sector ⇣ 2 (vj � ✏, vj + ✏) centered on the line⇣ = vj is given uniformly by

u(x, t) = usol(x, t; j) + uconst(j) + (�1)Nurad,as(x, t)

+O

✓ln t

t

◆, ⇣ 2 (vj � ✏, vj + ✏), t > 2, (10.22a)

while the asymptotics outside these sectors is given uniformly by

u(x, t) = uconst(j) + (�1)Nurad,as(x, t) +O

✓ln t

k3/20 t

◆,

⇣ 2 (vj + ✏, vj�1 � ✏), t > 2, j = 1, . . . ,⇤+ 1, (v⇤+1 + ✏ ⌘ 0, v0 � ✏ ⌘ 1), (10.22b)

where

vj =1� |�j |2

1 + |�j |2Point spectrum

Results for sG (with L. Huang)

Winding number =X

|�j |<1,�j2iRsgn(Im cj)

Results for sG (with L. Huang)

Winding number =

Only solitons can generate a=)nonzero winding number

X

|�j |<1,�j2iRsgn(Im cj)

Results for sG (with L. Huang)

Thank you!

top related