gradually varied flow (gvf)

Post on 28-Nov-2021

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

HydraulicsProf. Mohammad Saud Afzal

Department of Civil Engineering

Gradually Varied Flow (GVF)

Gradually Varied Flow (GVF)β€’ The flow in a channel is termed GRADUALLY VARIED, if the

flow depth changes gradually over a large length of thechannel.

β€’ AssumptionsThe channel is prismatic.

The flow in the channel is steady andand non-uniform.

The cross- sectional shape, size and bedslope are constant

The channel bed- slope is small.

The pressure distribution at any section is hydrostatic.

The resistance to flow at any depth is given by thecorresponding uniform flow equation. Example: Manning’s equation

Remember: In the uniform flow equations, energy slope 𝑺𝒇 is used in place of bed slope π‘ΊπŸŽ . When

Manning’s formula is used we get

𝑺𝒇 =π’πŸπ‘½πŸ

𝑹 ΰ΅—πŸ’ πŸ‘

Differential Equation of GVF

β€’ The total energy H of a GVF can be

expressed as:

𝑯 = 𝒛 + π’š +πœΆπ‘½πŸ

πŸπ’ˆ

β€’ Assuming 𝜢 = 𝟏, we get

𝑯 = 𝒛 + π’š +π‘½πŸ

πŸπ’ˆ

Adapted from Subramanya, K. (1986). Flow in Open

Channels. Tata McGraw- Hill Publishing Co. Ltd.

β€’ Differentiating both the sides of the

above equation w.r.t x𝒅𝑯

𝒅𝒙=

𝒅𝒛

𝒅𝒙+

π’…π’š

𝒅𝒙+

𝒅

𝒅𝒙

π‘½πŸ

πŸπ’ˆ(Eq. 1)

Represents energy slope𝒅𝑯

𝒅𝒙= βˆ’π‘Ίπ’‡

Represents bottom slope𝒅𝒛

𝒅𝒙= βˆ’π‘ΊπŸŽ

Represents the water surface slope w.r.t the channel bed

β€’ Further,𝒅

𝒅𝒙

π‘½πŸ

πŸπ’ˆ=

𝒅

π’…π’š

π‘ΈπŸ

πŸπ’ˆπ‘¨πŸπ’…π’š

𝒅𝒙

or𝒅

𝒅𝒙

π‘½πŸ

πŸπ’ˆ=

βˆ’π‘ΈπŸ

π’ˆπ‘¨πŸ‘π’…π‘¨

π’…π’š

π’…π’š

𝒅𝒙

𝒅𝑨

π’…π’š= 𝑻, where T is the top-

width of the channel

β€’ So we can rewrite Eq. 1 as

βˆ’π‘Ίπ’‡ = βˆ’π‘ΊπŸŽ +π’…π’š

π’…π’™βˆ’

π‘ΈπŸπ‘»

π’ˆπ‘¨πŸ‘π’…π’š

𝒅𝒙

or

π’…π’š

𝒅𝒙=

π‘ΊπŸŽβˆ’π‘Ίπ’‡

πŸβˆ’π‘ΈπŸπ‘»

π’ˆπ‘¨πŸ‘Differential Equation of GVF

NOTE:π‘ΈπŸπ‘»

π’ˆπ‘¨πŸ‘= 𝑭𝒓

𝟐, where 𝑭𝒓 is Froude Number

Classification of Flow Profilesβ€’ If 𝑸,𝒏 and π‘ΊπŸŽ are fixed, then the normal depth π’šπŸŽ and the

critical depth π’šπ’„ are fixed.

β€’ Three possible relationships that may exist between π’šπŸŽ and π’šπ’„are:π’šπŸŽ > π’šπ’„

π’šπŸŽ < π’šπ’„

π’šπŸŽ = π’šπ’„

Depth obtained from uniform flow equations

β€’ Further, π’šπŸŽ does not exist when:

The channel bed is horizontal.

The channel has an adverse slope.

β€’ Based on these, the channels are classified into 5

categories as:

π‘ΊπŸŽ = 𝟎

π‘ΊπŸŽ < 𝟎

1. Mild Slope (M) - π’šπŸŽ > π’šπ’„

2. Steep Slope (S) - π’šπŸŽ < π’šπ’„

3. Critical Slope (C) - π’šπŸŽ = π’šπ’„

4. Horizontal Bed (H) - π‘ΊπŸŽ = 𝟎

5. Adverse Slope (A) - π‘ΊπŸŽ < 𝟎

Subcritical flow at normal depth

Supercritical flow at normal depth

Critical flow at normal depth

Cannot sustain uniform flow

β€’ Lines representing the critical depth (CDL) and the normaldepth (NDL), when drawn in the longitudinal section, divide theflow space into the following 3 regions:

Region 1 – Space above the topmost line.

Region 2 – Space between the top line and the next lowerline.

Region 3 – Space between the second lineand the bed.

Adapted from Subramanya, K. (1986). Flow in Open Channels. Tata McGraw-

Hill Publishing Co. Ltd.

Adapted from Subramanya, K. (1986). Flow in Open Channels.

Tata McGraw- Hill Publishing Co. Ltd.

Mild Slope

Adapted from Subramanya, K. (1986). Flow in

Open Channels. Tata McGraw- Hill Publishing

Co. Ltd.

Steep Slope

Adapted from Subramanya, K. (1986). Flow in

Open Channels. Tata McGraw- Hill Publishing

Co. Ltd.

Critical SlopeAdapted from Subramanya, K. (1986). Flow in

Open Channels. Tata McGraw- Hill Publishing

Co. Ltd.

Horizontal Bed

Adapted from Subramanya, K. (1986). Flow in

Open Channels. Tata McGraw- Hill Publishing

Co. Ltd.

Adverse Slope

Adapted from Subramanya, K. (1986). Flow in

Open Channels. Tata McGraw- Hill Publishing

Co. Ltd.

Problem- 1

β€’ Find the rate of change of depth of water in a rectangularchannel 10 m wide and 1.5 m deep, when the water isflowing with a velocity of 1 m/s. The flow of water throughthe channel of bed slope 1 in 4000, is regulated in such a waythat energy line is having a slope of 0.00004.

Solution: 𝒃 = πŸπŸŽπ’Ž π’š = 𝟏. πŸ“ π’Ž 𝑽 = πŸπ’Ž/𝒔

π‘ΊπŸŽ = 𝟏/πŸ’πŸŽπŸŽπŸŽ 𝑺𝒇 = 𝟎. πŸŽπŸŽπŸŽπŸŽπŸ’

𝑨 = 𝒃 Γ— π’š = 𝟏𝟎 Γ— 𝟏. πŸ“ = πŸπŸ“π’ŽπŸ 𝑻 = 𝒃 = πŸπŸŽπ’Ž 𝑸 = 𝑨𝑽 = πŸπŸ“π’ŽπŸ‘/𝒔

π’…π’š

𝒅𝒙=

π‘ΊπŸŽβˆ’π‘Ίπ’‡

πŸβˆ’π‘ΈπŸπ‘»

π’ˆπ‘¨πŸ‘

π’…π’š

𝒅𝒙=

𝟏

πŸ’πŸŽπŸŽπŸŽβˆ’ 𝟎.πŸŽπŸŽπŸŽπŸŽπŸ’

πŸβˆ’πŸπŸ“πŸΓ—πŸπŸŽ

πŸ—.πŸ–πŸΓ—πŸπŸ“πŸ‘

π’…π’š

𝒅𝒙= 𝟐. πŸπŸ“ Γ— πŸπŸŽβˆ’πŸ’

Problem- 2β€’ A rectangular channel with a bottom width of 4 m and a bottom slope of 0.0008 has a

discharge of 1.5 m3/s. In a gradually varied flow in this channel, the depth at a certainlocation is found to be 0.30 m. Assuming Manning’s n = 0.016, determine the type ofGVF profile.

Solution: 𝒃 = πŸ’π’Ž π’š = 𝟎. πŸŽπŸ‘π’Ž 𝐐 = 𝟏. πŸ“ π’ŽπŸ‘/𝒔

π‘ΊπŸŽ = 𝟎. πŸŽπŸŽπŸŽπŸ– 𝐧 = 𝟎. πŸŽπŸπŸ”

Now, 𝑸

𝒃=

𝟏.πŸ“

πŸ’= 𝟎. πŸŽπŸ‘πŸ•πŸ“

π’ŽπŸ‘

𝒔/π’Ž π’šπ’„ =

π’’πŸ

π’ˆ

𝟏/πŸ‘

=𝟎.πŸ‘πŸ•πŸ“πŸ

πŸ—.πŸ–πŸ

𝟏/πŸ‘

= 𝟎. πŸπŸ’πŸ‘π’Ž

Now, 𝑸 =𝟏

π’π‘¨π‘ΉπŸ/πŸ‘π‘ΊπŸŽ

𝟏/𝟐𝟏. πŸ“ =

𝟏

𝟎.πŸŽπŸπŸ”πŸ’ Γ— π’šπŸŽ

πŸ’π’šπŸŽ

πŸ’+πŸπ’šπŸŽ

𝟐/πŸ‘(𝟎. πŸŽπŸŽπŸŽπŸ–)𝟏/πŸ‘

𝟏. πŸ“ =πŸ’

𝟎.πŸŽπŸπŸ”Γ— πŸ’πŸ/πŸ‘ Γ— (𝟎. πŸŽπŸŽπŸŽπŸ–)𝟏/𝟐

π’šπŸŽπ’šπŸŽπŸ/πŸ‘

(πŸ’+πŸπ’šπŸŽ)𝟐/πŸ‘

π’šπŸŽπŸ/πŸ‘

(πŸ’+πŸπ’šπŸŽ)𝟐/πŸ‘ = 𝟎. πŸŽπŸ–πŸ’πŸ

From trial and errorπ’šπŸŽ = 𝟎. πŸ’πŸπŸ”π’Ž

π’šπŸŽ > π’šπ’„ (Mild slope)Also π’šπŸŽ > π’š > π’šπ’„

π‘΄πŸ

Class Question A wide rectangular channel has a Manning’s coefficient of 0.018. For a discharge

intensity of 𝟏. πŸ“π’ŽπŸ‘

𝒔/π’Ž, identify the possible types of gradually varied flow profiles

produced in the following break in the grade of the channel.π‘ΊπŸŽπŸ = 𝟎. πŸŽπŸŽπŸŽπŸ’ 𝒂𝒏𝒅 π‘ΊπŸŽπŸ = 𝟎. πŸŽπŸπŸ”

Solution: Discharge intensity q = 1.5 π’ŽπŸ‘

𝒔/π’Ž

Critical depth π’šπ’„ = Ξ€π’’πŸ π’ˆπŸ/πŸ‘

= ΀𝟏. πŸ“πŸ πŸ—. πŸ–πŸπŸ/πŸ‘

= 𝟎. πŸ”πŸπŸπ’Ž

Normal depth π’šπŸŽ ∢ For a wide rectangular channel 𝑹 = π’šπŸŽ

𝒒 =𝟏

π’π’šπŸŽπ’šπŸŽ

𝟐/πŸ‘π’”πŸŽπŸ/𝟐

π’šπŸŽ =𝒏𝒒

π‘ΊπŸŽ

πŸ‘/πŸ“

π’šπŸŽ =𝟎. πŸŽπŸπŸ– Γ— 𝟏. πŸ“

π‘ΊπŸŽ

πŸ‘/πŸ“

Slope π’šπŸŽ

0.0004 1.197

0.016 0.396

π’šπ’„(π’Ž) π’šπŸŽπŸ(𝐦) π’šπŸŽπŸ(π’Ž)

0.612 1.197 0.396

Type of grade change : Mild to Steep

The resulting water surface profiles are:

π‘΄πŸ curve on Mild Slope and π‘ΊπŸ curve on steep slope

Rapidly varied flow

Hydraulic Jump due to change in bottom elevation

Rapidly varied flow

RVF due to transition

Hydraulic Jump

β€’ For Rapidly varied flow (RVF) dy/dx ~1

β€’ Flow depth changes occur over a relatively short distance. One such example is hydraulic jump

β€’ These changes in depth can be regarded as discontinuity in free surface elevation (dy/dx ∞)

β€’ Hydraulic jump results when there is a conflict between upstream and downstream influences that control particular section of channel

Hydraulic Jump

β€’ E.g. Sluice gate requires supercritical flow at upstream portion of channel whereas obstruction require the flow to be subcritical

β€’ Hydraulic jump provides the mechanism to make the transition between the two type of flows

Sluice Gate

Hydraulic Jumpβ€’ One of the most simple hydraulic jump occurs in a horizontal,

rectangular channel as below

Hydraulic Jump Geometry

Hydraulic Jump Assumptions

β€’ The flow within jump is complex but it is reasonable to assume that flow at sections 1 and 2 are nearly uniform, steady and 1D

β€’ Neglect any wall shear stress Ο„w, within relatively short segment between the sections

β€’ Pressure force at either section is hydrostatic

Hydraulic Jump Derivation

β€’ x-component of momentum equation for control volume is written as

)()( 12111221 VVbyVVVQFF

2

12

111

byApF c

Where

2

11

ypc

2

22

222

byApF c

2

22

ypc

b is the channel width

Hydraulic Jump Derivationβ€’ Momentum equation can be written as

β€’ Conservation of mass ( continuity ) gives

β€’ Energy conservation gives

)(22

12112

21

2

VVg

yVyy Eq. 19

QbVybVy 2211 Eq. 20

hL is the head loss

Lhg

Vy

g

Vy

22

2

22

2

11

Eq. 21

Hydraulic Jump Derivation

β€’ Head loss is due to violent turbulent mixing and dissipation that occur during the jump.

β€’ One obvious solution is y1=y2 and hL=0 NO JUMP

β€’ Another solution : Combine Eq 19 and 20 to eliminate V2

)()(22

21

2

1

2

11

2

111122

12

yygy

yVV

y

yV

g

yVyy Eq. 21b

Hydraulic Jump Derivation

Where Fr1 is upstream Froude number

Question : Obtain Eq. 21c from Eq. 21b

02)()( 2

1

1

22

1

2 Fry

y

y

yEq. 21c

β€’Using quadratic formula we get

)81(1(2

1 2

1

1

2 Fry

y

Hydraulic Jump Derivation

β€’ Solution with minus sign is neglected ??, Thus

β€’ We can also obtain 𝒉𝑳/ π’šπŸ by using Eq. 21

β€’ The result is

)81(1(2

1 2

1

1

2 Fry

y Eq. 22

])(1[2

1 2

2

1

2

1

1

2

1 y

yFr

y

y

y

hL Eq. 23

Hydraulic Jump Derivation

Question : Plot of Eq. 22 and corresponding Eq. 23

Hydraulic Jump Derivation

β€’ hL cannot be negative since it violates the law of thermodynamics

β€’ This means that y2/y1 cannot be less than 1 and Froude number upstream Fr1 is

always greater than 1 for hydraulic jump to take place.

β€’ A flow must be supercritical to produce discontinuity called a hydraulic

jump.

Examples of hydraulic jump

Jump caused by a change in channel slope

Examples of hydraulic jump

Submerged hydraulic jumps that can occur just downstream of a sluice gate

Class Question

2F1F

In a flow through rectangular channel for a certain discharge the Froude number corresponding to the two alternative depths are and . Show that

2

1

2

232

122

2

F

FFF

g

Vy

g

Vy

22

2

22

2

11

1y2y

Solution:Let and be the alternative depths.

12 EE The specific energy

2

2

22

1

2

11

21

21

gy

Vy

gy

Vy

numberFroudeFgy

V 2

2

2

1

2

2

2

1

2

2

2

1

2

2

21

21

F

F

F

F

y

y

3

2

2

22

23

1

2

22

1ygB

QFand

ygB

QF

Since

Also

Where Q = discharge in the channel and B = width of the channel, Hence

32

2

1

2

2

2

1

2

1

2

2

3

2

3

1

F

F

y

yor

F

F

y

y2

1

2

2

32

2

1

2

2

2

1

2

2

F

F

F

F

y

y

Class Question

β€’ Water on the horizontal apron of the 30 m wide spillway shown in Fig. has a depth of

0.20 m and a velocity of 5.5 m/s. Determine the depth, after the jump, the Froude

numbers before and after the jump.

Class Question

92.32.0*8.9

5.5

1

11

gy

VFr

Conditions across the jump are determined by the upstream Froude number Fr1

Upstream flow is super critical, and therefore it is possible to generate hydraulic jump

Class Question

We obtain depth ratio across the jump as

07.5)92.3*81(1(2

1)81(1(

2

1 22

1

1

2 Fry

y

01.12.0*07.52 y m

Class Question

We obtain V𝟐 by equating the flow rate

Subcritical Flow

08.101.1

5.5*2.0)(

2

112

y

VyV m/s

343.001.1*8.9

08.1

2

22

gy

VFr

Class Question

Head loss is obtained as

)2

()2

(2

22

2

11

g

Vy

g

VyhL

671.0Lh m

1) Prove that energy loss in a hydraulic jump occurring in a rectangular channel is

21

3

12

4

)(

yy

yyhL

Eq. 24

Class Question

The loss of mechanical energy that takes place in a hydraulic jump is calculated by the application of energy equation (Bernoulli’s equation). If loss of total head in the pump is 𝒉𝑳, then we can write by Bernoulli’s equation neglecting the slope of the channel.

π’šπŸ + Ξ€π‘½πŸπŸ πŸπ’ˆ = π’šπŸ + Ξ€π‘½πŸ

𝟐 πŸπ’ˆ + 𝒉𝑳

𝒉𝑳 = π’šπŸ βˆ’ π’šπŸ + Ξ€π‘½πŸπŸ πŸπ’ˆ βˆ’ Ξ€π‘½πŸ

𝟐 πŸπ’ˆ

𝒉𝑳 = π’šπŸ βˆ’ π’šπŸ +π’’πŸ

πŸπ’ˆ

𝟏

π’šπŸπŸ βˆ’

𝟏

π’šπŸπŸ 𝒒 = π‘½πŸπ’šπŸ = π‘½πŸπ’šπŸ

From Eq 21.c we are putting π‘½πŸ =𝒒

π’šπŸ(π‘­π’“πŸ =

π‘½πŸ

π’ˆπ’šπŸ)

π’šπŸπ’šπŸπŸ + π’šπŸ

πŸπ’šπŸ βˆ’πŸπ’’πŸ

π’ˆ= 𝟎

π’šπŸπ’šπŸπŸ + π’šπŸ

πŸπ’šπŸπŸ’

=π’’πŸ

πŸπ’ˆ

𝒉𝑳 = π’šπŸ βˆ’ π’šπŸ +π’šπŸπ’šπŸ

𝟐 + π’šπŸπŸπ’šπŸ

πŸ’

𝟏

π’šπŸπŸ βˆ’

𝟏

π’šπŸπŸ

Which Finally gives

𝒉𝑳 =(π’šπŸ βˆ’ π’šπŸ)

πŸ‘

πŸ’π’šπŸπ’šπŸ

If, in a hydraulic jump occurring in a rectangular channel, the Froude number before the jump is 10.0 and the energy loss is 3.20 m. Estimate (i) the sequent depths (ii) the discharge intensity and (iii) the Froude number after the jump.

Class Question

mEandF L 20.30.101

651.130.108112

1811

2

1 22

1

1

2

F

y

y

21

3

12

4 yy

yyEL

Solution:

The sequent depth ratio

Energy loss

12

3

12

1 4

1

yy

yy

y

EL

08.37651.134

1651.1320.33

1

y

m0863.008.37

20.3

1

11

gy

VF

0863.081.90.10 1

VsmV /201.91

msmyVq //7941.00863.0201.9 3

11

1983017818191781

79410

222

22 .

...

.

gyy

q

gy

VF

=depth before the jump =1y

2y =depth after the jump =13.651Γ—0.0863= 1.178 m

Discharge intensity

(iii) Froude number after the jump

(ii)

(i)

A rectangular channel has a width of 1.8 m and carries a discharge of 1.8 at a depth of

0.2 m. Calculate (a) the specific energy, (b) depth alternate to the existing depth and

(c) Froude numbers at the alternate depths.

Class Question

2

11 36.020.08.1 mByA

smAQV /0.536.0

80.1 2

11

m

g

VyE 4742.1

81.92

0.520.0

2

22

111

depthExistingmy 20.01

Solution:Let

Area

Velocity

(a) Specific energy

12 EE 4742.12

2

22

g

Vy

22112

2

2

2

2 ,4742.18.181.92

8.1AVAVas

yy

45.12 y

(b) Let1y2y =depth alternate to

Then

By trial and error,

gyVF

57.32.081.9

0.5,2.0 11

Fmy

𝑦2 = 1.45π‘š, 𝑉2 =𝑄

𝐡𝑦2=

1.80

1.80 Γ— 1.45= 0.69 π‘š/𝑠

1829.045.181.9

69.02

F

(c) Froude number for a rectangular channel is

For

For

Class Question In hydraulic jump occurring in a rectangular horizontal channel, the discharge per unit width is 2.5 π’ŽπŸ‘/𝒔/m and the depth before the jump is 0.25 m. Estimate (i) the sequent depth and (ii) the energy loss

Y1

V2

Y2

1V

Solution:

smy

qV

myandmsmq

/0.1025.0

5.2

25.0//5.2

1

1

1

3

Initial Froude number 386.625.081.9

0.10

1

11

gy

VF

2

1

1

2 8112

1F

y

y

22 386.68112

1

25.0

y

depthSequentmy 136.22

12 yy(i) The sequent depth ratio is given by

m

yy

yyEL 141.3

250.0136.24

250.0136.2

4

3

21

3

12

LE(ii) The energy loss is given by

Class Question A hydraulic jump occur in a horizontal triangular channel. If the sequent depths in this channel are 0.60 m and 1.20 m respectively, estimate (i) the flow rate, (ii) Froude number at the beginning and end of the jump and (iii) energy loss in the jump.

Solution:

y m=1

(i) Consider a triangular channel of side slope

m horizontal: 1 vertical in fig (in the present

case m=1)

33

32 ymy

myyA

2

22

my

Q

A

Q

P=pressure force=

M=Momentum flux =

2211 MPMP

2

2

23

2

2

1

23

1

33 ym

Qym

ym

Qym

3

1

3

22

2

2

1

2

3

11yy

gm

yym

Q

For a hydraulic jump in horizontal, frictionless channel

1

2

2

1

2

4

1

233

1

22

1

1

3 y

ywhere

y

yym

g

Q

0.26.02.11

2 y

y

24192.012

2126.0

3

12

2352

g

Q

On simplifying

In the present problem m=1,

smQ /541.1 3

TAgA

QF

52

2

62

2

3

22 22

ygm

Q

ygm

myQ

gA

TQF

494.2

222.66.0181.9

541.12

1

5

2

2

1

F

F

,2

52

22

ygm

QF

II. For triangular channel as such

Froude number at the end of the jump:Since

657.560.0

20.12525

1

2

2

1

y

y

F

F

441.0657.5494.22 F

g

Vy

g

VyEEEL

22

2

22

2

1121

smV

mA

smV

mA

/070.144.154.1

44.12.11

/281.436.0541.1

36.06.01

2

22

2

1

22

1

mEL 276.0258.1534.1

81.92

070.12.1

81.92

281.46.0

22

III. Energy loss

Class Question Water flows in a wide channel at q =10 π’ŽπŸ‘/(s.m) and π’šπŸ = 1.25 m. If the flow undergoes a hydraulic jump, compute (a) π’šπŸ, (b) π‘½πŸ, (c) π‘­π’“πŸ, (d) 𝒉𝒇, (e) the percentage

dissipation, (f) the power dissipated per unit width, and (g) the temperature rise due to dissipation if π‘ͺ𝒑 4200 J/(kg. K).

Solution:π‘½πŸ =

𝒒

π’šπŸ=πŸπŸŽπ’ŽπŸ‘/(s.m)

𝟏. πŸπŸ“ π’Ž= πŸ–. 𝟎 π’Ž/𝒔

The upstream Froude number is therefore

π‘­π’“πŸ =π‘½πŸ

π’ˆπ’šπŸπŸ/𝟐

=πŸ–. 𝟎

πŸ—. πŸ–πŸ(𝟏. πŸπŸ“) 𝟏/𝟐= 𝟐. πŸπŸ–πŸ“

This is a weak jump. The depth π’šπŸ is obtained from πŸπ’šπŸ

π’šπŸ= βˆ’πŸ + (𝟏 + πŸ–π‘­π’“πŸ

𝟐)𝟏/𝟐

πŸπ’šπŸπ’šπŸ

= βˆ’πŸ + (𝟏 + πŸ–(𝟐. πŸπŸ–πŸ“)𝟐)𝟏𝟐 = πŸ“. πŸ“πŸ’

π’šπŸ =𝟏

πŸπ’šπŸ πŸ“. πŸ“πŸ’ = πŸ‘. πŸ’πŸ”π’Ž

The downstream velocity is π‘½πŸ =π‘½πŸπ’šπŸπ’šπŸ

=πŸ–. 𝟎(𝟏. πŸπŸ“)

πŸ‘. πŸ’πŸ”= 𝟐. πŸ–πŸ—π’Ž/𝒔

The downstream Froude number is π‘­π’“πŸ =π‘½πŸ

π’ˆπ’šπŸπŸ/𝟐

=𝟐. πŸ–πŸ—

πŸ—. πŸ–πŸ(πŸ‘. πŸ’πŸ”) 𝟏/𝟐= 𝟎. πŸ’πŸ—πŸ”

As expected, π‘­π’“πŸ is subcritical, the dissipation loss is 𝒉𝒇 =(πŸ‘. πŸ’πŸ” βˆ’ 𝟏. πŸπŸ“)πŸ‘

πŸ’(πŸ‘. πŸ’πŸ”)(𝟏. πŸπŸ“)= 𝟎. πŸ”πŸπŸ“π’Ž

The percentage dissipation relates 𝒉𝒇 to upstream energy:

π‘¬πŸ = π’šπŸ +π‘½πŸπŸ

πŸπ’ˆ= 𝟏. πŸπŸ“ +

πŸ–πŸ

𝟐(πŸ—. πŸ–πŸ)= πŸ’. πŸ“πŸ

Hence percentage loss = πŸπŸŽπŸŽπ’‰π’‡

π‘¬πŸ=

𝟏𝟎𝟎(𝟎.πŸ”πŸπŸ“)

πŸ’.πŸ“πŸ= πŸπŸ’ 𝒑𝒆𝒓𝒄𝒆𝒏𝒕

The power dissipated per unit width is

Power= π†π’ˆπ’’π’‰π’‡ = πŸ—πŸ–πŸŽπŸŽπ‘΅

π’ŽπŸ‘ πŸπŸŽπ’ŽπŸ‘

𝒔.π’ŽπŸŽ. πŸ”πŸπŸ“π’Ž = πŸ”πŸ. πŸ‘ π’Œπ‘Ύ/π’Ž

Finally, the mass flow rate is αˆΆπ’Ž = 𝝆𝒒 (1000 kg/π’ŽπŸ‘)[10 π’ŽπŸ‘/(s.m)] 10,000 kg/(s m), and the

temperature rise from the steady flow energy equation is

Power dissipated = αˆΆπ’Žπ’„π’‘βˆ†π‘»

πŸ”πŸπŸ‘πŸŽπŸŽπ‘Ύ

π’Ž= 10,000 kg/(s m) πŸ’πŸπŸŽπŸŽ

𝑱

π’Œπ’ˆ.𝑲 βˆ†π‘»

from which βˆ†π‘» = 𝟎. πŸŽπŸŽπŸπŸ“π‘²

The dissipation is large, but the temperature rise is negligible

top related