functional ito calculus and pde for path-dependent options

Post on 25-Feb-2016

60 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Functional Ito Calculus and PDE for Path-Dependent Options. Bruno Dupire Bloomberg L.P. PDE and Mathematical Finance KTH, Stockholm, August 19, 2009. Outline. Functional Ito Calculus Functional Ito formula Functional Feynman-Kac PDE for path dependent options 2)Volatility Hedge - PowerPoint PPT Presentation

TRANSCRIPT

Functional Ito Calculus

and PDE for Path-Dependent Options Bruno Dupire

Bloomberg L.P.

PDE and Mathematical Finance

KTH, Stockholm, August 19, 2009

Outline1) Functional Ito Calculus

• Functional Ito formula• Functional Feynman-Kac• PDE for path dependent options

2) Volatility Hedge

• Local Volatility Model• Volatility expansion• Vega decomposition• Robust hedge with Vanillas• Examples

1) Functional Ito Calculus

Why?

process. theof history,or path,current theof functions it to extend We

processes. of functions with deals calculus Ito

prepayment MBS path rateinterest reaction viralantigen toexposure

payoffdependent path history pricecrop theofquality etemperatur

:patternscertain on depends)(

eConsequencCauselink The .cumulative isy uncertaint ofimpact theoften,Most

ttf

t XfyX

Review of Ito Calculus• 1D

• nD

• infiniteD

• Malliavin Calculus

• Functional Ito Calculus

current value

possible evolutions

Functionals of running paths

)( and )( is at of valueThe)(,for ,: :functional

}t][0, functions RCLL bounded{t][0, sections starting allon but T][0,path wholeon theonly not defined sFunctional

],0[

tXxsXtsXXfXff

tttt

ttt

Ttt

t

0 T

12.87

6.32

6.34

Examples of Functionals

hit is last value First time-average rolling ofMax -

variablesstate ofnumber Infinite

(3) rangeon Option -(2)Asian -

(1)European -: time)(excluding variablesstate ofnumber Finite

priceoption dependent path of caseimportant thecovers onelast The

valuefinal ofn expectatio lConditiona- variationQuadratic-

drawdownCurrent -averageCurrent -

Derivatives

tXfXf

Xf

hXfXfXf

tttstXsXtssXsX

htXtXtssXsX

fX

ttt

ttt

tht

htx

tttttt

thtt

ht

tt

Tttt

)()(lim)(

derivative Time

)()(lim)(

derivative Space

],[for )()( for )()(

)()( for )()(

,:,For

},t][0, functions RCLL bounded{

,

0

0

,,

],0[

Examples

00)(201

0

tt

ttx

t

t

ut

xfxxf

QVduxxf

thf

xhf

txhXf tt

t

x

then ),,()( If

Topology and Continuity

tsYXYXd

stYX

ststst

st

,),(

) assumecan (we ,in , allFor :distance -

)()(),(

,:0,0: if at continuous is : functionalA

:continuity -

tsst

s

t

XfYfYXd

YXf

t s

X

Y

Functional Ito Formula

xdfdtfdxfdf

xdXfdtXfdxXfXfXf

TtCxCf

Xx

xxtx

T

ttxx

T

tt

T

ttxT

t

21

notation, concise morein or,

)(21)()()()(

, 0 allfor then,,continuous- themselvessderivative e with thes,in and in ,continuous- is :

t],[0,over path its denotes and martingale-semi continuous a is If

Theorem

0000

12

Fragment of proof

))()(())()(())()((

)()(

ffffff

ffdf

Functional Feynman-Kac Formula

dx t = a(X t )dt + b(X t ) dwt

For g and r suitably integrable, g : ΛT →ℜ, r : Λ →ℜ we define f :Λ →ℜ by

f (Yt ) ≡ E[e− r(Z u )

t

T∫ dug(ZT ) | Zt = Yt ]

where for u∈ [0, t],ZT (u) = Yt (u)for u∈ [t,T],dzu = a(Zu)du + b(Zu)dwu

⎧ ⎨ ⎩

Then f satisfies

Δ t f (X t ) + a(X t )Δx f (X t ) − r(X t ) f (X t ) + b2(X t )2

Δxx f (X t ) = 0

(From functional Ito formula, using that e− r(Z u )

0

t∫ duf (X t ) is a martingale)

Delta Hedge/Clark-Ocone

ttTtt

T

TT

ttxt

T

TT

ttxtt

dWXXgDEXbXXgEXg

dWXfXbXfXfXg

dWXfXbXdf

]|)([)(]|)([)(

:CalculusMalliavin fromformula Ocone-Clark the tocompared becan which

)()()()()(

:tionRepresenta Martingaleexplicit thehave weand)()()(

Kac,-Feynman and Ito functional From

00

00

P&L

St t

St

Break-even points

t

t

Option Value

St

CtCt t

S

Delta hedge

P&L of a delta hedged Vanilla

Functional PDE for Exotics

Recallthat

df (X t ) = Δx f (X t ) dx + Δ t f (X t ) dt + 12

b2Δxx f (X t ) dt

The portfolio PF of option f with a short position of Δx f stocksgives :

dPF(X t ) = Δ t f (X t ) dt + 12

b2Δxx f (X t ) dt

In the absence of arbitrage,

Δ t f (X t ) + 12

b2Δxx f (X t ) + r(X t )(Δx f (X t )x t − f (X t )) = 0

The ?/Θ trade - off for European options also holds forpath dependent options, even with an infinite number of state variables.However, in general ? and Θ will be path dependent.

Classical PDE for Asian

term.convection bothering a is

0210

21

,0

),,()(, Define ),( Assume

)()( :CallAsian of Payoff

2

222

2

2

0

0

Ilx

xlb

Ilx

tlfbf

xlf

xlfI

tl

IlxfxI

tIxlXfduxIdWtxbdx

KduxXg

xxt

xxxx

ttt

t

tttutttt

T

uT

Better Asian PDE

0))()(2(210

21

)()(2

)()(

0

),,()(,)(][ Define

2

22

2

2

222

2

22

2

2

2

00

JhtT

JxhtT

xhb

thfbf

JhtT

JxhtT

xhf

JhtT

xhf

tTJ

thfJ

tJxhXfxtTduxduxEJ

xxt

xx

x

x

tt

tttt

t

u

T

utt

2) Robust Volatility Hedge

Local Volatility Model• Simplest model to fit a full surface• Forward volatilities that can be locked

CqKCKqr

KCKTK

TC

dWtSdtqrS

dS

2

22

2

2,

),()(

Summary of LVM• Simplest model that fits vanillas

• In Europe, second most used model (after Black-Scholes) in Equity Derivatives

• Local volatilities: fwd vols that can be locked by a vanilla PF

• Stoch vol model calibrated

• If no jumps, deterministic implied vols => LVM

),(][ 22 tSSSE loctt

S&P500 implied and local vols

S&P 500 FitCumulative variance as a function of strike. One curve per maturity.Dotted line: Heston, Red line: Heston + residuals, bubbles: market

RMS in bpsBS: 305Heston: 47H+residuals: 7

Hedge within/outside LVM• 1 Brownian driver => complete model

• Within the model, perfect replication by Delta hedge

• Hedge outside of (or against) the model: hedge against volatility perturbations

• Leads to a decomposition of Vega across strikes and maturities

Implied and Local Volatility Bumps

implied to

local volatility

P&L from Delta hedging

T

txxtt

T

ttx

T

txxt

T

tt

T

ttxTT

ttt

txxttt

tTQ

tT

ttt

dtYftyvvdyYfXf

dtYfvdtYfdyYfYfYfYg

xydWvdyy

XftxvXf

XXgEXffg

dWtxvdxqrv

0 000

0000

00

0

0

)()),((21)()(

)(21)()()()()(

formula, Ito functional by the , with follows If

0)(),(21)( PDE, functionalBy

])([)(by define,For

.),(,0 Assume0

Model Impact

T

ttxxtQv

g

T

txxttQ

gg

vT

Qg

T

txxtt

T

ttxTT

dtdxxxXftxvvEtxv

dtXftxvvEvv

vtxXYgEv

dtYftyvvdyYfXfYfYg

v

v

v

0 00

0 00

0

0 000

])()),([(),(21)(

])()),(([21)()(

,for density n transitio the),( and ])([)( with Hence,

)()),((21)()()()(

Recall

Comparing calibrated models

][],[

:alive""by ngconditioni ofimpact theevaluate toamountsIt

),(][ options, vanillasame on the calibrated are and If

],)),([(),(),(21

],)()),([(),(),(21

])()),([(),(21)()(

option,Barrier out -knock aFor

])()),([(),(21)()(

Recall

00

0 02

2

0 0

0 00

0 00

xxvEalivexxvE

txvxxvEvv

dtdxalivexxtxvvEx

txftx

dtdxalivexxXftxvvEtxPtx

dtdxxxXftxvvEtxvv

dtdxxxXftxvvEtxvv

ttQ

ttQ

ttQ

T

ttQalivev

alive

T

ttxxtQ

alivev

T

ttxxtQv

gg

T

ttxxtQv

gg

vv

v

v

v

v

v

Volatility Expansion in LVM

])([),(21),( where

),(),()(

])([),(),(21)()(

),(),( : form theof LVM a is wherecase In the

])()),([(),(21)()(

general,In

00

00

00

000

00

0 00

xxXfEtxtxm

dtdxtxutxmv

dtdxxxXfEtxutxvuv

dWtxutxvdxuvv

dtdxxxXftxvvEtxvv

ttxxQuv

T

g

T

ttxxQuv

gg

tttt

T

ttxxtQv

gg

uv

uv

v

Frechet Derivative in LVM

)derivative(Frechet ),(at variancelocal the to ofy sensitivit theis

])([),(21),(

where

),(),(

])([),(),(21

)()(lim,

:satisfies ofdirection in the derivativeFrechet The

])([),(),(2

)()(

,particularIn

00

00

00

0

0

00

0v

000

txg

xxXfEtxtxm

dtdxtxutxm

dtdxxxXfEtxutx

vuvu

u

dtdxxxXfEtxutxvuv

ttxxQv

T

T

ttxxQv

ggg

T

ttxxQuv

gg

v

v

uv

One Touch Option - PriceBlack-Scholes model S0=100, H=110, σ=0.25, T=0.25

One Touch Option - Γ

PtSmTO ..21),(:..

Up-Out Call - PriceBlack-Scholes model S0=100, H=110, K=90, σ=0.25, T=0.25

Up-Out Call - Γ

PtSmUOC ..21),(:

Black-Scholes/LVM comparison

price. LVM reach the toenables Scholes-Black theofinput y volatilitno case, In this

Vanilla hedging portfolio I

?),(function get the can we How

),(])([])([),(

t)(x, allfor ifonly and if moves volatility

small all hedges vanillasof ),( Portfolio

.at variancelocal theto

ofy sensitivit theis ])([),(21),( Recall

00

00

2

2

,

g

TK

txhxxXfExxXEx

txPF

dTdKCTKPF

(x,t)

xxXfEtxtxm

ttxxQ

ttPFxxQ

TK

ttxxQv

vv

v

Vanilla hedging portfolios II

bumps. volimplied y tosensitivit no hence

bumps vollocal y tosensitivit no has and 0]),()([,,

00 with 0)(then 21)( take weIf c)

.)()( Thus,

])([),( with ),(),(]),()([),(

),(),)((),( b)

)(),(condition boundary with 0)( , call aFor

21)( define we),,(For a)

2

2

20

2

2

2

2

2

2

2

,

2,

2

2,

2

,

20

2

0

00

PF-fxxtxxPFXfEtx

kk(x,T)kLx

hvthhL

hLkL

xxXfEtxhtxxPFtxhxxtx

xPFXfEtxk

txtxxPFLdTdKCTKPF

xTxx

Cx

CLC

xkv

tkkLtxk

ttxxQ

ttxxQ

ttxxQ

TK

KTKTK

TK

v

vv

Example : Asian option

.at variancelocal theto ofy sensitivit theis ])([),(21),(

1maturity20 volatility100S, )( : off-Pay v

g

000

0

00 (x,t) xxXfEtxtxm

TvKKdtxXgdWdx

ttxxQv

T

tttt

v

K

T

KT

Asian Option Superbuckets

KT

20

2

,

),(),(21),(),(

),( with hedgeatility Robust vol

xTKhTKv

tTKhTK

dTdKCTKPF TK

K

T

Γ/VegaLink

Conclusion

• Ito calculus can be extended to functionals of price paths

• Local volatilities are forward values that can be locked

• LVM crudely states these volatilities will be realised

• It is possible to hedge against this assumption

• It leads to a strike/maturity decomposition of the volatility risk of the full portfolio

top related