flight and orbital mechanics - tu delft opencourseware · semester 1 - 2012 challenge the future...

Post on 13-May-2018

217 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Semester 1 - 2012

Challenge the future

DelftUniversity ofTechnology

Flight and Orbital MechanicsLecture 7 – Equations of motion

Mark Voskuijl

2AE2104 Flight and Orbital Mechanics |

Time scheduleDate Time Hours Topic

4 Sep 10.45 – 12.30 1, 2 Unsteady climb

6 Sep 10.45 – 12.30 3, 4 Minimum time to climb

11 Sep 10.45 – 12.30 5, 6 Turning performance

13 Sep 10.45 – 12.30 7, 8 Take – off

18 Sep 10.45 – 12.30 9, 10 Landing

20 Sep 10.45 – 12.30 11, 12 Cruise

25 Sep 10.45 – 12.30 13, 14 Equations of motion (wind gradient)

27 Sep 10.45 – 12.30 15, 16 Kepler orbits, gravity, Earth-repeat orbits, sun-

synchronous orbits, geostationary satellites

2 Oct 10.45 – 12.30 17, 18 Third-body perturbation, atmospheric drag, solar

radiation, thrust

4 Oct 10.45 – 12.30 19, 20 Eclipse, maneuvers

9 Oct 10.45 – 12.30 21, 22 Interplanetary flight

11 Oct 10.45 – 12.30 23, 24 Interplanetary flight

16 Oct 10.45 – 12.30 25, 26 Launcher, ideal vs. real flight, staging, design

18 Oct 10.45 – 12.30 27, 28 Exam practice

3AE2104 Flight and Orbital Mechanics |

4AE2104 Flight and Orbital Mechanics |

5AE2104 Flight and Orbital Mechanics |

6AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

7AE2104 Flight and Orbital Mechanics |

Introduction

Newton’s laws only hold with respect to a frame of reference which is in absolute rest. This is called an inertial frame of reference

Coordinate systems translating uniformly to the frame of reference in absolute rest are also inertial frames of reference

A rotating frame of reference is not an inertial frame of reference

Newton’s laws

8AE2104 Flight and Orbital Mechanics |

Introduction

• Derivation of equations of motion

• General 3 dimensional flight

• 2 dimensional flight with a wind gradient

• General approach!

Objective

9AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

10AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Earth axis system: {Eg}

1. Xg axis in the horizontal plane, orientation is arbitrary

2. Yg axis in the horizontal plane, orientation: perpendicular to Xg

3. Zg axis points downwards

Earth axis system

11AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

2

2

'Centrifugal force'

e

e

W VC

g R h

C V

W R h g

Assumption 1: the earth is flat

Valid assumption

2

2

Example

100 [m/s]

6371 [km]

9.80665 [m/s ]

0 [m]

1000.00016

6371000 0 9.80665

(0.016%)

e

V

R

g

h

C

W

Assumption

12AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Assumption 2: the earth is non-rotating

Assumptions

13AE2104 Flight and Orbital Mechanics |

14AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Moving earth axis system: {Ee}

1. Xe parallel to Xg axis but attached to c.g. of aircraft

2. Ye parallel to Yg axis but attached to c.g. of aircraft

3. Ze axis points downwards

Moving earth axis system

15AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Body axis system: {Eb}

1. Origin is fixed to the aircraft c.g.

2. Xb lies in plane of symmetry and points towards the nose

3. Yb is perpendicular to the plane of symmetry and is directed to the right wing

4. Zb is perpendicular to Xb and Yb

Body axis system

16AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesYaw angle (body axis)

17AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesPitch angle (body axis)

18AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesRoll angle (body axis)

19AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Air path axis system: {Ea}

1. Origin is fixed to the aircraft c.g.

2. Xa lies along the velocity vector3. Za taken in the plane of

symmetry of the airplane4. Ya is positive starboard

Air path axis system

20AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesAzimuth angle (air path axis)

21AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesFlight path angle (air path axis system)

22AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesAerodynamic angle of roll (air path axis system)

23AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

• Four axes systems can be defined

• Earth

• Moving Earth

• Body axes

• Air path axes

• Three Euler angles define the orientation of the aircraft (body

axes) Yaw Pitch Roll

• Three Euler angles define the orientation of the aircraft (body

axes) Azimuth Flight path Aerodynamic roll

• The sequence of the Euler angles is very important!!!

Summary

24AE2104 Flight and Orbital Mechanics |

25AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

26AE2104 Flight and Orbital Mechanics |

Vector / matrix notation

X

Z

Y

P

r

i

kz

x

r xi yj zk

i, j and k are unit vectors along the axes

27AE2104 Flight and Orbital Mechanics |

Vector / matrix notation

: Row

: Column

: Square matrix

i

r x i y j z k x y z j

k

x y z E

28AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

29AE2104 Flight and Orbital Mechanics |

Accelerations

dVa

dt

0 0 aV V E

0 0 0 0a a

dVV E V E

dt

?

What is the time derivative of the air path axis system?

30AE2104 Flight and Orbital Mechanics |

Accelerations

x

yz

Xa

Ya

Za

i

j

k

-ky

jz

kx

-iz-jx

iy

0

0

0

z y

a z x a

y x

E E

0 z y

dii j k

dt

0 y x

dki j k

dt

0 z x

dji j k

dt

Time derivative of the air path axis system

31AE2104 Flight and Orbital Mechanics |

Accelerations

0 0 0 0a a

dVV E V E

dt

0

0 0 0 0 0

0

z y

a z x a

y x

dVV E V E

dt

z y a

dVV V V E

dt

32AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

33AE2104 Flight and Orbital Mechanics |

Forces

F L D T W

0 0 0 1a eF T D L E W E

No sideslip

Assume thrust in direction of airspeed vector

34AE2104 Flight and Orbital Mechanics |

ForcesSideslip angle

35AE2104 Flight and Orbital Mechanics |

ForcesSideslip angle

36AE2104 Flight and Orbital Mechanics |

Forces Sideslip angle

37AE2104 Flight and Orbital Mechanics |

Forces

F L D T W

0 0 0 1a eF T D L E W E

Problem: different axis systems Express all forces in 1 axis system

38AE2104 Flight and Orbital Mechanics |

Forces

{Ee}

{Ea}

Transformation matrices

39AE2104 Flight and Orbital Mechanics |

Forces

Xe X1

Ye

Y1

1j

ej

1iei

1

1

1

cos sin 0

sin cos 0

0 0 1

e

e

e

i i

j j

k k

1

1

1

cos sin

sin cos

e e

e e

e

i i j

j i j

k k

1 eE T E

Rotation over azimuth angle ()

40AE2104 Flight and Orbital Mechanics |

Forces

2i

1i

2k

X1

Z1

X2

Z2

1k 2 1E T E

cos 0 sin

0 1 0

sin 0 cos

T

2 1 1

2 1

2 1 1

cos sin

sin cos

i i k

j j

k i k

Rotation over flight path angle ()

41AE2104 Flight and Orbital Mechanics |

2j

aj

2k

Y2

Ya

Z2

Ya

ak

2aE T E

1 0 0

0 cos sin

0 sin cos

T

2

2 2

2 2

cos sin

sin cos

a

a

a

i i

j j k

k j k

Rotation over aerodynamic angle of roll ()

Forces

42AE2104 Flight and Orbital Mechanics |

Forces

{Ee}

{Ea}

Transformation matrices

43AE2104 Flight and Orbital Mechanics |

Forces

a eE T T T E

1

2

e

e

a e

E T E

E T T E

E T T T E

1 1 1

e aE T T T E

Transformation matrices

44AE2104 Flight and Orbital Mechanics |

Forces

1

1 1

. . . . . .

. . . . . .

. . . . . .

T

I

Properties of transformation matrices

45AE2104 Flight and Orbital Mechanics |

Forces

0 0 0 1a e

F L D T W

T D L E W E

0 0 0 1T T T

a aF T D L E W T T T E

sin cos sin cos cos aF T D W W L W E

cos sin 0 cos 0 sin 1 0 0

0 0 1 0 0 1 sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

T T T

e aW E W E

0 0 1 sin cos sin cos cose aW E W W W E

All results combined

46AE2104 Flight and Orbital Mechanics |

Equations of motion

F m a

sin cos sin cos cos aF T D W W L W E

z y a

dVa V V V E

dt

sin

cos sin

cos cos

z

y

T D W mV

W mV

L W mV

3 equations of motion!

47AE2104 Flight and Orbital Mechanics |

Equations of motion

sin

cos sin

cos cos

sin

cos sin

cos cos

z

y

T D W mV

W mV

L W mV

mV T D W

mV L

mV L W

Using transformation matricesto convert x, y and z

Rewrite in traditional form

48AE2104 Flight and Orbital Mechanics |

Equations of motion

1 1

1 aE T T E

cos 0 sin 1 0 0

0 0 0 1 0 0 cos sin

sin 0 cos 0 sin cos

aE

10 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

sin cos sin cos cos aE

49AE2104 Flight and Orbital Mechanics |

Equations of motion

1

2 aE T E

1 0 0

0 0 0 cos sin

0 sin cos

aE

20 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

0 cos sin aE

50AE2104 Flight and Orbital Mechanics |

Equations of motion

3 aE E

30 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

0 0 aE

51AE2104 Flight and Orbital Mechanics |

Equations of motion

sin cos sin cos cos cos sin

x y z a

a

E

E

Conversion x, y, z to d/dt, d/dt, d/dt

52AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

53AE2104 Flight and Orbital Mechanics |

Equations of motion

sin

cos sin

cos cos

mV T D W

mV L

mV L W

Final result

54AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

55AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

An aircraft is flying from A to B over a distance of 1000 nautical miles. The True Airspeed of this aircraft is 120 knots (1kt = 1 nautical mile per hour). The aircraft is experiencing a constant headwind of 20 kts.

How long does it take to fly from A to B?

A. Less than 10 hours

B. 10 hours

C. More than 10 hours

Question

56AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

57AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

58AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

g wV V V

(wind speed)wV

(ground speed)gr V

(airspeed)V

Xa

Xg

Zg

r

59AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

0WdV

dt

Wind is not constant:

This lecture: only horizontal wind

( )WdVf H

dt

60AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

g wV V V

ga V

g wa V V V

Absolute acceleration

So we need to define the velocity first

0 0 0 0g a w gV V E V E

The acceleration can be determined by taking the time derivative

0 0 0 0a w g

d da V E V E

dt dt

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

61AE2104 Flight and Orbital Mechanics |

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

What are and ???a gE E

The ground axis system is at rest

0gE

However, the air path axis system is rotating and translating

62AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

a

di

dt

dE j

dt

dk

dt

0 0d

k i j kdt

0 0d

i i j kdt

0 0 0d

j i j kdt

0 0 0 0

0 0 0 0 0 0

0 0 0 0

a a

di

dt id

E j j Edt

kd

kdt

63AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

0 0

0 0 0 0 0 0 0 0 0

0 0

a a w ga V E V E V E

0 0 0 0 0 0a a w ga V E V E V E

0 0 0a w ga V V E V E

Fill in the results

Write out

Simplify

Two axis systems…

64AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

cos 0 sin

0 1 0

sin 0 cos

g aE E

cos 0 sing a a ai i j k

0 1 0g a a aj i j k

sin 0 cosg a a ak i j k

0 0 0a w ga V V E V E

cos 0 sin

0 0 0 0 1 0

sin 0 cos

a w aa V V E V E

65AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

cos 0 sin

0 0 0 0 1 0

sin 0 cos

a w ga V V E V E

0 cos 0 sina w w aa V V E V V E

cos 0 sinw w aa V V V V E

66AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin 0 cosa a aF T D W i j L W k

V

Zb

Ze

Xe

Xb

Xg

Zg

Xa

Za

D

W

T

Assumption: T // V

sin 0 cos aF T D W L W E

L

67AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin 0 cos

cos 0 sin

g

a

w w a

F m V

F T D W W L E

a V V V V E

sin cos

0 0

cos sin

w

w

WT D W V V

g

WL W V V

g

68AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin

cos w

H RC V

s V V

69AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

70AE2104 Flight and Orbital Mechanics |

71AE2104 Flight and Orbital Mechanics |

Questions?

top related