faculdade de engenharia universidade do portojcf/ensino/disciplinas/mieec/pcvlsi/2017... · topics...

Post on 11-Nov-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Wire Modeling

João Canas Ferreira

Universidade do PortoFaculdade de Engenharia

April 2016

Topics

1 Interconnect Structure

2 Capacitance

3 Resistance

4 Propagation delay

João Canas Ferreira (FEUP) Wire Modeling April 2016 2 / 30

On-chip interconnects

Schematic Physical

I Real interconnects have a 3D structure

João Canas Ferreira (FEUP) Wire Modeling April 2016 3 / 30

Interconnect usage

João Canas Ferreira (FEUP) Wire Modeling April 2016 4 / 30

Example of 3D interconnect structure

Source: [unknown]

I Metal 1 - metal 4I Vias

João Canas Ferreira (FEUP) Wire Modeling April 2016 5 / 30

Global vs. local interconnect

João Canas Ferreira (FEUP) Wire Modeling April 2016 6 / 30

Topics

1 Interconnect Structure

2 Capacitance

3 Resistance

4 Propagation delay

João Canas Ferreira (FEUP) Wire Modeling April 2016 7 / 30

Interconnect capacitance

João Canas Ferreira (FEUP) Wire Modeling April 2016 8 / 30

Parallel plates

Cint =εditdi

WL

João Canas Ferreira (FEUP) Wire Modeling April 2016 9 / 30

Relative permittivity of typical dielectrics

João Canas Ferreira (FEUP) Wire Modeling April 2016 10 / 30

Fringe capacitance

Capacitance per length unit (approximation):

Cwire = Cpp + Cfringe =εdiwtdi

+2πεdi

log(2 tdi/H + 1)w = W –

H2

João Canas Ferreira (FEUP) Wire Modeling April 2016 11 / 30

Influence of fringe capacitance

João Canas Ferreira (FEUP) Wire Modeling April 2016 12 / 30

Capacitance between wires

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 13 / 30

Impact of interwire capacitance

João Canas Ferreira (FEUP) Wire Modeling April 2016 14 / 30

Interwire capacitance for a 0.25 µm CMOS process

Source: [Rabaey03]

Areas in aF/µm2, lengths in aF/µm (fringe capacitance, in gray).

João Canas Ferreira (FEUP) Wire Modeling April 2016 15 / 30

Topics

1 Interconnect Structure

2 Capacitance

3 Resistance

4 Propagation delay

João Canas Ferreira (FEUP) Wire Modeling April 2016 16 / 30

Resistance of a single wire

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 17 / 30

Resistivity of different materials

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 18 / 30

Polycide gate

Reducing polysilicon resistivity by a factor of 8–10:

Silicides: WSi2, TiSi2, PtSi2 and TaSi

João Canas Ferreira (FEUP) Wire Modeling April 2016 19 / 30

Typical sheet resistance

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 20 / 30

Example: Intel 0.25 µm process

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 21 / 30

Topics

1 Interconnect Structure

2 Capacitance

3 Resistance

4 Propagation delay

João Canas Ferreira (FEUP) Wire Modeling April 2016 22 / 30

Lumped parameter model

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 23 / 30

Elmore delay

Source: [Rabaey03]

à There is just one resistive path between r and any node i (Rii).à Shared path resistance between the paths from r to nodes i and j (Rij):

Rik =∑

Rj where Rj ∈ [path(r→ i) ∩ path(r→ k)]

à Equivalent time constant (dominant pole):

τri =N∑

k=1

CkRik

João Canas Ferreira (FEUP) Wire Modeling April 2016 24 / 30

Special case: the RC chain

τ =N∑

i=1

Ci

i∑j=1

Rj =N∑

i=1

CiRii

In this case, the path resistance and the shared path resistance are the same.

João Canas Ferreira (FEUP) Wire Modeling April 2016 25 / 30

Interconnect model by segments

à Consider a line of length L composed of N equal segments

τ =(

LN

)2(rc + 2rc + · · · + Nrc) =

(rcL2

) N(N + 1)

2N2 = RCN + 12N

with

R = rL C = cL

à For large N:

τ =RC2

=rcL2

2

à This is the same result that would be obtained by treating the wire as atransmission line.

João Canas Ferreira (FEUP) Wire Modeling April 2016 26 / 30

Response of RC wire to a voltage step

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 27 / 30

Intermediate RC models

Source: [Rabaey03]

João Canas Ferreira (FEUP) Wire Modeling April 2016 28 / 30

Distributed RC line

τ = RSCW +RWCW

2= RSCW + 0.5rwcwL2

tp = 0.69RSCW + 0.38RWCW

Practical rule: use a distributed line model only if tpRC ≥ tgate.

Criterion for critical wire length:

Lcrit =

√tpgate

0.38rc

João Canas Ferreira (FEUP) Wire Modeling April 2016 29 / 30

References

à Some of the figures used come from:

Rabaey03 J. M. Rabaey et al, Digital Integrated Circuits, 2nd edition,Prentice Hall, 2003.http://bwrc.eecs.berkeley.edu/icbook/

João Canas Ferreira (FEUP) Wire Modeling April 2016 30 / 30

top related