expectation. let x denote a discrete random variable with probability function p(x) (probability...

Post on 17-Jan-2016

224 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Expectation

Let X denote a discrete random variable with probability function p(x) (probability density function f(x) if X is continuous) then the expected value of X, E(X) is defined to be:

i ix i

E X xp x x p x

E X xf x dx

and if X is continuous with probability density function f(x)

Example: Suppose we are observing a seven game series where the teams are evenly matched and the games are independent. Let X denote the length of the series. Find:

1. The distribution of X. 2. the expected value of X, E(X).

Solution: Let A denote the event that team A, wins and B denote the event that team B wins. Then the sample space for this experiment (together with probabilities and values of X) would be (next slide):

outcome AAAA BBBB BAAAA ABAAA AABAA AAABA

Prob (½ )4 (½ )4 (½ )5 (½ )5 (½ )5 (½ )5

X 4 4 5 5 5 5

outcome ABBBB BABBB BBABB BBBAB ABBBB BBAAAA

Prob (½ )5 (½ )5 (½ )5 (½ )5 (½ )6 (½ )6

X 5 5 5 5 6 6

outcome BABAAA BAABAA BAAABA ABBAAA ABABAA ABAABA

Prob (½ )6 (½ )6 (½ )6 (½ )6 (½ )6 (½ )6

X 6 6 6 6 6 6

outcome AABBAA AABABA AAABBA AABBBB ABABBB ABBABB

Prob (½ )6 (½ )6 (½ )6 (½ )6 (½ )6 (½ )6

X 6 6 6 6 6 6

- continued

At this stage it is recognized that it might be easier to determine the distribution of X using counting techniques

• The possible values of X are {4, 5, 6, 7}• The probability of a sequence of length x is (½)x

• The series can either be won by A or B.• If the series is of length x and won by one of the

teams (A say) then the number of such series is:1

4

x

x

In a series of that lasts x games, the winning team wins 4 games and the losing team wins x - 4 games. The winning team has to win the last games. The no. of ways of choosing the games that the losing team wins is:

1

4

x

x

Thus

11 11 1

24 42 2

x xx xp x P X x

x x

The no. of ways of choosing the games that the losing team wins

The no. of ways of choosing the winning team

The probability of a series of length x.

x 4 5 6 7

p(x)33 1 1

0 2 8

44 1 1

1 2 4

55 1 5

2 2 16

66 1 5

3 2 16

i ix i

E X xp x x p x

1316

1 1 5 54 5 6 7

8 4 16 16

8 20 30 35 935

16 16

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7

Interpretation of E(X)

1. The expected value of X, E(X), is the centre of gravity of the probability distribution of X.

2. The expected value of X, E(X), is the long-run average value of X. (shown later –Law of Large Numbers)

E(X)

Example: The Binomal distribution

Let X be a discrete random variable having the Binomial distribution. i. e. X = the number of successes in n independent repetitions of a Bernoulli trial. Find the expected value of X, E(X).

1 0,1,2,3, ,n xxn

p x p p x nx

0 0

1n n

n xx

x x

nE X xp x x p p

x

1

1

1

!1

! !

nn xx

x

nn xx

x

nx p p

x

nx p p

x n x

Solution:

0 0

1n n

n xx

x x

nE X xp x x p p

x

1

1

1

!1

! !

nn xx

x

nn xx

x

nx p p

x

nx p p

x n x

1

!1

1 ! !

nn xx

x

np p

x n x

1 21 2! !1 1

0! 1 ! 1! 2 !

n nn np p p p

n n

1! !

12 !1! 1 !0!

n nn np p p

n n

1 20 11 ! 1 !1 1

0! 1 ! 1! 2 !

n nn nnp p p p p

n n

2 11 ! 1 !

12 !1! 1 !0!

n nn np p p

n n

1 20 11 11 1

0 1n nn n

np p p p p

2 11 11

2 1n nn n

p p pn n

1 11 1

n nnp p p np np

Example: A continuous random variable

The Exponential distribution

Let X have an exponential distribution with parameter .

This will be the case if:

1. P[X ≥ 0] = 1, and

2. P[ x ≤ X ≤ x + dx| X ≥ x] = dx.

The probability density function of X is:

0

0 0

xe xf x

x

The expected value of X is:

0

xE X xf x dx x e dx

We will determine

udv uv vdu

0

xE X xf x dx x e dx

xx e dx using integration by parts.

In this case and xu x dv e dx

Hence and xdu dx v e

Thus x x xx e dx xe e dx 1

x xxe e

0

00

1 x x xE X x e dx xe e

1 10 0 0

Summary:

1E X

If X has an exponential distribution with parameter then:

Example:

The Uniform distribution

Suppose X has a uniform distribution from a to b.

Then:

1

0 ,b a a x b

f xx a x b

The expected value of X is:

1b

b aa

E X xf x dx x dx

2 2 2

1

2 2 2

b

b a

a

x b a a b

b a

Example:

The Normal distribution

Suppose X has a Normal distribution with parameters and .

Then: 2

221

2

x

f x e

The expected value of X is:

2

221

2

x

E X xf x dx x e dx

xz

Make the substitution:1

and dz dx x z

Hence

Now

2

21

2

z

E X z e dz

2 2

2 21

2 2

z z

e dz ze dz

2 2

2 21

1 and 02

z z

e dz ze dz

Thus E X

Example:

The Gamma distribution

Suppose X has a Gamma distribution with parameters and .

Then: 1 0

0 0

xx e xf x

x

Note:

This is a very useful formula when working with the Gamma distribution.

1

0

1 if 0,xf x dx x e dx

The expected value of X is:

1

0

xE X xf x dx x x e dx

This is now equal to 1. 0

xx e dx

1

10

1

1xx e dx

1

Thus if X has a Gamma ( ,) distribution then the expected value of X is:

E X

Special Cases: ( ,) distribution then the expected value of X is:

1. Exponential () distribution: = 1, arbitrary

1E X

2. Chi-square () distribution: = /2, = ½.

21

2

E X

The Gamma distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

E X

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

The Exponential distribution

1E X

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25

The Chi-square (2) distribution

E X

Expectation of functions of Random Variables

DefinitionLet X denote a discrete random variable with probability function p(x) (probability density function f(x) if X is continuous) then the expected value of g(X), E[g(X)] is defined to be:

i ix i

E g X g x p x g x p x

E g X g x f x dx

and if X is continuous with probability density function f(x)

Example:

The Uniform distribution

Suppose X has a uniform distribution from 0 to b.

Then:

1 0

0 0,b x b

f xx x b

Find the expected value of A = X2 . If X is the length of a side of a square (chosen at random form 0 to b) then A is the area of the square

2 2 2 1b

b aa

E X x f x dx x dx

3 3 3 2

1

0

0

3 3 3

b

b

x b b

b

= 1/3 the maximum area of the square

Example:

The Geometric distribution

Suppose X (discrete) has a geometric distribution with parameter p.

Then: 1

1 for 1, 2,3,x

p x p p x

Find the expected value of X A and the expected value of X2.

2 32 2 2 2 2 2

1

1 2 1 3 1 4 1x

E X x p x p p p p p p p

2 3

1

1 2 1 3 1 4 1x

E X xp x p p p p p p p

Recall: The sum of a geometric Series

Differentiating both sides with respect to r we get:

2 3

1

aa ar ar ar

r

2 3 1or with 1, 1

1a r r r

r

22 32

11 2 3 4 1 1 1

1r r r r

r

Differentiating both sides with respect to r we get:

Thus

This formula could also be developed by noting:

2 3

2

11 2 3 4

1r r r

r

2 31 2 3 4r r r 2 31 r r r 2 3r r r 2 3r r

3r 2 31

1 1 1 1

r r r

r r r r

2 32

1 1 1 11

1 1 1 1r r r

r r r r

This formula can be used to calculate:

2 3

1

1 2 1 3 1 4 1x

E X xp x p p p p p p p

2 31 2 3 4 where 1p r r r r p

2 31 2 3 4 where 1p r r r r p 22

1 1 1= =

1p p

r p p

To compute the expected value of X2.

2 32 2 2 2 2 2

1

1 2 1 3 1 4 1x

E X x p x p p p p p p p

2 2 2 2 2 31 2 3 4p r r r

we need to find a formula for

2 2 2 2 2 3 2 1

1

1 2 3 4 x

x

r r r x r

Note 2 31

0

11

1x

x

r r r r S rr

Differentiating with respect to r we get

1 2 3 1 11 2

0 1

11 2 3 4

1x x

x x

S r r r r xr xrr

Differentiating again with respect to r we get

2 31 2 3 2 4 3 5 4S r r r r

32 23

1 2

21 1 2 1 1

1x x

x x

x x r x x r rr

23

2

21

1x

x

x x rr

Thus

2 2 2

32 2

2

1x x

x x

x r xrr

2 2 2

32 2

2

1x x

x x

x r xrr

implies

2 2 23

2 2

2

1x x

x x

x r xrr

2 2 2 2 2 3 2

3

22 3 4 5 2 3 4

1r r r r r

r

Thus

2 2 2 2 3 2

3

21 2 3 4 1 2 3 4

1r r r r r r

r

2 3

3

21 2 3 4

1

rr r r

r

3 2 3 3

2 1 2 1 1

1 1 1 1

r r r r

r r r r

3

2 if 1

pr p

p

Thus

2 2 2 2 2 31 2 3 4E X p r r r

2

2 p

p

Moments of Random Variables

Definition

Let X be a random variable (discrete or continuous), then the kth moment of X is defined to be:

kk E X

-

if is discrete

if is continuous

k

x

k

x p x X

x f x dx X

The first moment of X , = 1 = E(X) is the center of gravity of the distribution of X. The higher moments give different information regarding the distribution of X.

Definition

Let X be a random variable (discrete or continuous), then the kth central moment of X is defined to be:

0 k

k E X

-

if is discrete

if is continuous

k

x

k

x p x X

x f x dx X

where = 1 = E(X) = the first moment of X .

The central moments describe how the probability distribution is distributed about the centre of gravity, .

01 E X

and is denoted by the symbol var(X).

= 2nd central moment. 202 E X

depends on the spread of the probability distribution of X about .

202 E X is called the variance of X.

202 E X is called the standard

deviation of X and is denoted by the symbol .

20 22var X E X

The third central moment

contains information about the skewness of a distribution.

303 E X

The third central moment

contains information about the skewness of a distribution.

303 E X

Measure of skewness

0 03 3

1 3 23 02

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25 30 35

03 0, 0

Positively skewed distribution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25 30 35

03 10, 0

Negatively skewed distribution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30 35

03 10, 0

Symmetric distribution

The fourth central moment

Also contains information about the shape of a distribution. The property of shape that is measured by the fourth central moment is called kurtosis

404 E X

The measure of kurtosis

0 04 4

2 24 02

3 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30 35

040, moderate in size

Mesokurtic distribution

0

0 20 40 60 80

040, small in size

Platykurtic distribution

0

0 20 40 60 80

040, large in size

leptokurtic distribution

Example: The uniform distribution from 0 to 1

1 0 1

0 0, 1

xf x

x x

11 1

0 0

11

1 1

kk k

k

xx f x dx x dx

k k

Finding the moments

Finding the central moments:

1

0 12

0

1kk

k x f x dx x dx

12making the substitution w x

1122

1 12 2

1 11 1 12 20

1 1

k kkk

k

ww dw

k k

1

1

1if even1 1

2 12 1

0 if odd

kk

k

kk

kk

Thus

0 0 02 3 42 4

1 1 1 1Hence , 0,

2 3 12 2 5 80

02

1var

12X

02

1var

12X

03

1 30

The standard deviation

The measure of skewness

04

1 24

1 803 3 1.2

1 12

The measure of kurtosis

Rules for expectation

Rules:

if is discrete

if is continuous

x

g x p x X

E g Xg x f x dx X

1. where is a constantE c c c

if then g X c E g X E c cf x dx

c f x dx c

Proof

The proof for discrete random variables is similar.

2. where , are constantsE aX b aE X b a b

if then g X aX b E aX b ax b f x dx

Proof

The proof for discrete random variables is similar.

a xf x dx b f x dx

aE X b

2023. var X E X

2 22x x f x dx

Proof

The proof for discrete random variables is similar.

22 22 1E X E X

2 2var X E X x f x dx

2 22x f x dx xf x dx f x dx

2 2

2 2 12E X E X

24. var varaX b a X

Proof

2var aX baX b E aX b

2E aX b a b

22E a X

22 2 vara E X a X

aX b E aX b aE X b a b

Moment generating functions

Definition

if is discrete

if is continuous

x

g x p x X

E g Xg x f x dx X

Let X denote a random variable, Then the moment generating function of X , mX(t) is defined by:

Recall

if is discrete

if is continuous

tx

xtX

Xtx

e p x X

m t E ee f x dx X

Examples

1 0,1,2, ,n xxn

p x p p x nx

The moment generating function of X , mX(t) is:

1. The Binomial distribution (parameters p, n)

tX txX

x

m t E e e p x

0

1n

n xtx x

x

ne p p

x

0 0

1n nx n xt x n x

x x

n ne p p a b

x x

1nn ta b e p p

0,1,2,!

x

p x e xx

The moment generating function of X , mX(t) is:

2. The Poisson distribution (parameter )

tX txX

x

m t E e e p x 0 !

xntx

x

e ex

0 0

using ! !

t

xt xe u

x x

e ue e e e

x x

1te

e

0

0 0

xe xf x

x

The moment generating function of X , mX(t) is:

3. The Exponential distribution (parameter )

0

tX tx tx xXm t E e e f x dx e e dx

0 0

t xt x e

e dxt

undefined

tt

t

2

21

2

x

f x e

The moment generating function of X , mX(t) is:

4. The Standard Normal distribution ( = 0, = 1)

tX txXm t E e e f x dx

2 22

1

2

x tx

e dx

2

21

2

xtxe e dx

2 2 2 22 2

2 2 21 1

2 2

x tx t x tx t

Xm t e dx e e dx

We will now use the fact that 2

221

1 for all 0,2

x b

ae dx a ba

We have completed the square

22 2

2 2 21

2

x tt t

e e dx e

This is 1

1 0

0 0

xx e xf x

x

The moment generating function of X , mX(t) is:

4. The Gamma distribution (parameters , )

tX txXm t E e e f x dx

1

0

tx xe x e dx

1

0

t xx e dx

We use the fact

1

0

1 for all 0, 0a

a bxbx e dx a b

a

1

0

t xXm t x e dx

1

0

t xtx e dx

tt

Equal to 1

Properties of Moment Generating Functions

1. mX(0) = 1

0, hence 0 1 1tX XX Xm t E e m E e E

v) Gamma Dist'n Xm tt

2

2iv) Std Normal Dist'n t

Xm t e

iii) Exponential Dist'n Xm tt

1ii) Poisson Dist'n

te

Xm t e

i) Binomial Dist'n 1nt

Xm t e p p

Note: the moment generating functions of the following distributions satisfy the property mX(0) = 1

2 33212. 1

2! 3! !kk

Xm t t t t tk

We use the expansion of the exponential function:2 3

12! 3! !

ku u u u

e uk

tXXm t E e

2 32 31

2! 3! !

kkt t t

E tX X X Xk

2 3

2 312! 3! !

kkt t t

tE X E X E X E Xk

2 3

1 2 312! 3! !

k

k

t t tt

k

0

3. 0k

kX X kk

t

dm m t

dt

Now 2 332

112! 3! !

kkXm t t t t t

k

2 1321 2 3

2! 3! !kk

Xm t t t ktk

2 13

1 2 2! 1 !kkt t t

k

1and 0Xm

24

2 3 2! 2 !kk

Xm t t t tk

2and 0Xm continuing we find 0kX km

i) Binomial Dist'n 1nt

Xm t e p p

Property 3 is very useful in determining the moments of a random variable X.

Examples

11

nt tXm t n e p p pe

10 010 1

n

Xm n e p p pe np

2 11 1 1

n nt t t t tXm t np n e p p e p e e p p e

2

2

1 1 1

1 1

nt t t t

nt t t

npe e p p n e p e p p

npe e p p ne p p

2 221np np p np np q n p npq

1ii) Poisson Dist'n

te

Xm t e

1 1t te e ttXm t e e e

1 1 2 121t t te t e t e tt

Xm t e e e e

1 2 12 2 1t te t e tt t

Xm t e e e e

1 2 12 3t te t e tte e e

1 3 1 2 13 23t t te t e t e t

e e e

0 1 0

1 0e

Xm e

0 01 0 1 02 22 0

e e

Xm e e

3 0 2 0 0 3 23 0 3 3t

Xm e e e

To find the moments we set t = 0.

iii) Exponential Dist'n Xm tt

1

X

d tdm t

dt t dt

2 21 1t t

3 32 1 2Xm t t t

4 42 3 1 2 3Xm t t t

5 54 2 3 4 1 4!Xm t t t

1

!kk

Xm t k t

Thus

2

1

10Xm

3

2 2

20 2Xm

1 !

0 !kk

k X k

km k

2 33211

2! 3! !kk

Xm t t t t tk

The moments for the exponential distribution can be calculated in an alternative way. This is note by expanding mX(t) in powers of t and equating the coefficients of tk to the coefficients in:

2 31 11

11Xm t u u u

tt u

2 3

2 31

t t t

Equating the coefficients of tk we get:

1 ! or

!k

kk k

k

k

2

2t

Xm t e

The moments for the standard normal distribution

We use the expansion of eu.2 3

0

1! 2! 3! !

k ku

k

u u u ue u

k k

2 2 2

22

2

2 3

2 2 2

212! 3! !

t

kt t t

tXm t e

k

2 4 6 212 2 3

1 1 11

2 2! 2 3! 2 !k

kt t t t

k

We now equate the coefficients tk in:

2 222

112! ! 2 !

k kk kXm t t t t t

k k

If k is odd: k = 0.

2 1

2 ! 2 !k

kk k

For even 2k:

2

2 !or

2 !k k

k

k

1 2 3 4 2

2! 4!Thus 0, 1, 0, 3

2 2 2!

top related