excited states electronic properties · 2016-06-14 · excited states electronic properties and...

Post on 24-Jun-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Intro MBPT & GW Linear BSE TDDFT

Excited States Electronic Propertiesand Theoretical Spectroscopy

Francesco Sottile

Ecole de simulation numerique en matiere condensee

Jussieu, 9 June 2016

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

E [n] ⇒

Total energy, phase stability,bulk modulus, lattice constant, etc.[

−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

n(r) =∑i

|φi (r)|2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

E [n] ⇒

Total energy, phase stability,bulk modulus, lattice constant, etc.[

−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

n(r) =∑i

|φi (r)|2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

E [n] ⇒

Total energy, phase stability,bulk modulus, lattice constant, etc.[

−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

n(r) =∑i

|φi (r)|2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

E [n] ⇒

Total energy, phase stability,bulk modulus, lattice constant, etc.[

−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

n(r) =∑i

|φi (r)|2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

Often reasonable results also for excitations

• ab initio

• qualitative estimate

• powerful analysis tool

• starting point for more accurate methods

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

homo lumo

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

Z A M Γ X R Z Γ A R Γ

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

En

erg

y(e

V)

Band Structure of SnO2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

Z A M Γ X R Z Γ A R Γ

-10

-8

-6

-4

-2

0

2

4

6

8

10

12E

ner

gy

(eV

)

Band Structure of SnO2

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

calculated

gap(eV)

:LDA

HgTe InSb

,P,InAs

InN,Ge,GaS

b,CdO

SiInP,GaA

s,CdTe,AlSb

Se,Cu2O

AlAs,GaP

,SiC,AlP,CdS

ZnSe

,CuB

rZnO,GaN

,ZnS

diam

ond

SrO AlN

MgO

CaO

experimental gap (eV)

Intro MBPT & GW Linear BSE TDDFT

Optical properties

11 12 13 14 15 16ω(eV)

5

10

15

Im

εM

exp

DFT level

Solid Argon Absorption spectrum

Intro MBPT & GW Linear BSE TDDFT

Density Functional Theory

E [n] ⇒

Total energy, phase stability,bulk modulus, lattice constant, etc.[

−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

n(r) =∑i

|φi (r)|2

Intro MBPT & GW Linear BSE TDDFT

What is an electron ?

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: charged excitations

Direct Photoemission

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: charged excitations

Inverse Photoemission

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: charged excitations

Direct and inverse photoemission spectroscopy

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: neutral excitations

Absorption

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: neutral excitations

i

unoccupied states

occupied states

j

Absorption

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: neutral excitations

Electron Energy Loss Spectroscopy

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

DFT vs MBPT

Density Functional Theory

O[n] ⇐ n(r) =occ∑i

|φi (r)|2

Many-Body Perturbation Theory

O[G ]

G (r1, t1, r2, t2) = −i⟨N∣∣∣T [ψ(r1, t1)ψ†(r2, t2)

]∣∣∣N⟩

Intro MBPT & GW Linear BSE TDDFT

DFT vs MBPT

Density Functional Theory

O[n] ⇐ n(r) =occ∑i

|φi (r)|2

Many-Body Perturbation Theory

O[G ]

G (r1, t1, r2, t2) = −i⟨N∣∣∣T [ψ(r1, t1)ψ†(r2, t2)

]∣∣∣N⟩

Intro MBPT & GW Linear BSE TDDFT

DFT vs MBPT

Density Functional Theory

O[n] ⇐ n(r) =occ∑i

|φi (r)|2

Many-Body Perturbation Theory

O[G ]

G (r1, t1, r2, t2) = −i⟨N∣∣∣T [ψ(r1, t1)ψ†(r2, t2)

]∣∣∣N⟩

Intro MBPT & GW Linear BSE TDDFT

Green’s Function G

G (r1, r2, ω) =∑n

An(r1)A∗n(r2)

ω − En + iη

En =

additional energy :: En > µ

removal energy :: En < µ

The poles of G are the excitation energies

Intro MBPT & GW Linear BSE TDDFT

Green’s Function G

G (r1, r2, ω) =∑n

An(r1)A∗n(r2)

ω − En + iη

En =

additional energy :: En > µ

removal energy :: En < µ

The poles of G are the excitation energies

Intro MBPT & GW Linear BSE TDDFT

Spectroscopies :: charged excitations

Direct Photoemission

Intro MBPT & GW Linear BSE TDDFT

Green’s Function G - spectral function

A(r1, r2, ω) ∝ ImG (r1, r2, ω)

interacting

non-interactingA( )

E

Intro MBPT & GW Linear BSE TDDFT

Green’s Function G - spectral function

A(r1, r2, ω) ∝ ImG (r1, r2, ω)

A( )

E

non-interacting

interacting

Intro MBPT & GW Linear BSE TDDFT

How to calculate G ?

G (1, 2) = −i⟨N∣∣∣T [ψ(1)ψ†(2)

]∣∣∣N⟩G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Σ = self-energy

Intro MBPT & GW Linear BSE TDDFT

How to calculate G ?

G (1, 2) = −i⟨N∣∣∣T [ψ(1)ψ†(2)

]∣∣∣N⟩G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Σ = self-energy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s equations

Σ(1, 2) = i

∫d(34)G (1, 3)Γ(3, 2, 4)W (4, 1+)

G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

W (1, 2) = v(1, 2) +

∫d(34)v(1, 3)P(3, 4)W (4, 2)

Intro MBPT & GW Linear BSE TDDFT

Hedin’s equations

Σ(1, 2) = i

∫d(34)G (1, 3)Γ(3, 2, 4)W (4, 1+)

G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

W (1, 2) = v(1, 2) +

∫d(34)v(1, 3)P(3, 4)W (4, 2)

Intro MBPT & GW Linear BSE TDDFT

Hedin’s equations

Σ(1, 2) = i

∫d(34)G (1, 3)Γ(3, 2, 4)W (4, 1+)

G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

W (1, 2) = v(1, 2) +

∫d(34)v(1, 3)P(3, 4)W (4, 2)

Intro MBPT & GW Linear BSE TDDFT

Hedin’s equations

Σ(1, 2) = i

∫d(34)G (1, 3)Γ(3, 2, 4)W (4, 1+)

G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

W (1, 2) = v(1, 2) +

∫d(34)v(1, 3)P(3, 4)W (4, 2)

Intro MBPT & GW Linear BSE TDDFT

Hedin’s equations

Σ(1, 2) = i

∫d(34)G (1, 3)Γ(3, 2, 4)W (4, 1+)

G (1, 2) = G 0(1, 2) +

∫d(34)G 0(1, 3)Σ(3, 4)G (4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

W (1, 2) = v(1, 2) +

∫d(34)v(1, 3)P(3, 4)W (4, 2)

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon: possible strategy

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

Quasi-particle equation

[−∇2 + Vion + VH + Σ(r, r′,E )

]ψi (r) = Eiψi (r)

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

Quasi-particle equation

[−∇2 + Vion + VH + Σ(r, r′,E )

]ψi (r) = Eiψi (r)

interacting

non-interactingA( )

E

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

Quasi-particle equation

[−∇2 + Vion + VH + Σ(r, r′,E )

]ψi (r) = Eiψi (r)

• Σ(r, r′, ω) non-local,non-hermitian, energydependent

• Ei complexquasiparticle

interacting

non-interactingA( )

EReE i

ImE i

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

Quasi-particle equation

[−∇2 + Vion + VH + Σ(r, r′,E )

]ψi (r) = Eiψi (r)

DFT-KS equation

[−∇2 + Vion + VH + Vxc

]φi (r) = εiφi (r)

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

Quasi-particle equation

[−∇2 + Vion + VH + G 0W 0

]ψi (r) = Eiψi (r)

DFT-KS equation

[−∇2 + Vion + VH + V lda

xc

]φi (r) = εiφi (r)

Intro MBPT & GW Linear BSE TDDFT

In practice: quasi-particle approximation

interacting

non-interactingA( )

EReE i

ImE i

ilda

Intro MBPT & GW Linear BSE TDDFT

LDA band gap

calculated

gap(eV)

:LDA

HgTe InSb

,P,InAs

InN,Ge,GaS

b,CdO

SiInP,GaA

s,CdTe,AlSb

Se,Cu2O

AlAs,GaP

,SiC,AlP,CdS

ZnSe

,CuB

rZnO,GaN

,ZnS

diam

ond

SrO AlN

MgO

CaO

experimental gap (eV)

Intro MBPT & GW Linear BSE TDDFT

GW results :: band gap

calculated

gap(eV)

:LDA:GW(LDA)

HgT

e InSb

,P,In

AsInN,Ge,GaS

b,CdO

SiInP,GaA

s,CdT

e,AlSb

Se,Cu2

OAlAs

,GaP

,SiC,AlP,CdS

ZnSe

,CuB

rZn

O,GaN

,ZnS

diam

ond

SrO AlN

MgO

CaO

experimental gap (eV)

van Schilfgaarde et al., PRL 96, 226402 (2006)

Intro MBPT & GW Linear BSE TDDFT

GW results :: band gap

experimental gap (eV)

QPs

cGW

gap(eV)

MgOAlN

CaO

HgT

e InSb

,InAs

InN,GaS

bInP,GaA

s,CdT

eCu2

O ZnTe

,CdS

ZnSe

,CuB

rZn

O,GaN

ZnS

P,Te

SiGe,CdO

AlSb,SeAlAs,GaP,SiC,AlP

SrOdiamond

van Schilfgaarde et al., PRL 96, 226402 (2006)

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

Absorption

Beer Law

I (x) = I0e−αx

α⇐⇒ ε

Intro MBPT & GW Linear BSE TDDFT

Absorption

Ellipsometry Experiments

ε = sin2Φ + sin2Φtan2Φ

(1− Er

Ei

1 + ErEi

)

Intro MBPT & GW Linear BSE TDDFT

Absorption

Creation of an electron-hole pair

i

unoccupied states

occupied states

j

Intro MBPT & GW Linear BSE TDDFT

Absorption

Lautenschlager et al., PRB 36, 4821 (1987)

Intro MBPT & GW Linear BSE TDDFT

Absorption

Izumi et al., Anal.Chem. 77, 6969 (2005)

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Energy Loss Function

d2σ

dΩdE∝ Im

ε−1

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: Electron Scattering

Intro MBPT & GW Linear BSE TDDFT

Spectroscopy: X-ray Scattering

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

System submitted to an external perturbation

Vtot = ε−1Vext

Vtot = Vext + Vind

E = ε−1D

Dielectric function ε

Abs

EELS

εX-ray

R index

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Definition of polarizability

not polarizable ⇒ Vtot = Vext ⇒ ε−1 = 1polarizable ⇒ Vtot 6= Vext ⇒ ε−1 6= 1

ε−1 = 1 + vχ

χ is the polarizability of the system

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Definition of polarizability

not polarizable ⇒ Vtot = Vext ⇒ ε−1 = 1polarizable ⇒ Vtot 6= Vext ⇒ ε−1 6= 1

ε−1 = 1 + vχ

χ is the polarizability of the system

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Definition of polarizability

not polarizable ⇒ Vtot = Vext ⇒ ε−1 = 1polarizable ⇒ Vtot 6= Vext ⇒ ε−1 6= 1

ε−1 = 1 + vχ

χ is the polarizability of the system

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Definition of polarizability

not polarizable ⇒ Vtot = Vext ⇒ ε−1 = 1polarizable ⇒ Vtot 6= Vext ⇒ ε−1 6= 1

ε−1 = 1 + vχ

χ is the polarizability of the system

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Single-particle polarizability

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

hartree, hartree-fock, dft, etc.

G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

i

unoccupied states

occupied states

j

Intro MBPT & GW Linear BSE TDDFT

Spectra within DFT

Loss spectrum of Graphite

Intro MBPT & GW Linear BSE TDDFT

Spectra within DFT

Intro MBPT & GW Linear BSE TDDFT

Spectra within DFT

11 12 13 14 15 16ω(eV)

5

10

15

Im

εM

exp

DFT level

Solid Argon Absorption spectrum

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Single-particle polarizability

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

hartree, hartree-fock, dft, etc.

G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

i

unoccupied states

occupied states

j

Intro MBPT & GW Linear BSE TDDFT

Spectra within DFT

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

How to go beyond χ0 ?

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon

Intro MBPT & GW Linear BSE TDDFT

Hedin’s pentagon

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

Spectra in IP picture

IP-RPA

Abs = Im χ0

i

unoccupied states

occupied states

j

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

Spectra in GW approximation

GW-RPA

Abs = Im χ0GW

χ0GW = P = −iGG

ioccupied states

j

unoccupied (GW corrected) states

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

Spectra in GW-RPA

χ0 =∑ij

φi(r)φ∗j (r)φ∗i (r′)φj(r′)

ω − (εi − εj)

χ0GW =

∑ij

φi(r)φ∗j (r)φ∗i (r′)φj(r′)

ω −[

(εi + ∆GW

i )−(εj + ∆GW

j

)]

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

Spectra in GW-RPA

χ0 =∑ij

φi(r)φ∗j (r)φ∗i (r′)φj(r′)

ω − (εi − εj)

χ0GW =

∑ij

φi(r)φ∗j (r)φ∗i (r′)φj(r′)

ω −[

(εi + ∆GW

i )−(εj + ∆GW

j

)]

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

Spectra in GW-RPA

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

GG Polarizability

P(1, 2) = −i G (1, 2)G (2, 1+)

Intro MBPT & GW Linear BSE TDDFT

Spectra in MBPT

GGΓ Polarizability

P(1, 2) = −i∫

d(34)G (1, 3)G (4, 1+)Γ(3, 4, 2)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)+

+

∫d(4567)

δΣ(1, 2)

δG (4, 5)G (4, 6)G (7, 5)Γ(6, 7, 3)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

Towards the Bethe-Salpeter Equation

From electron and hole propagation .....

P0(1234) = G (13)G (42) ...

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

Towards the Bethe-Salpeter Equation

From electron and hole propagation to the electron-holeinteraction

P(1234) = P0(1234) + P0(1256)

[v +

δΣ(56)

δG (78)

]P(7834)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

P(1234)=P0(1234)+P0(1256)

[v(57)δ(56)δ(78)+

δΣ(56)

δG (78)

]P(7834)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

P = P0 + P0

[v +

δΣ

δG

]P

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

P = GG + GG

[v − δ [GW ]

δG

]P

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter Equation

P = GG + GG [v −W ]P

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter EquationBethe-Salpeter Equation

P = P0 + P0 [v −W ]P

Intrinsic 4-point equation

Correct!It describes the (coupled) progation

of two particles, the electron andthe hole !

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter EquationBethe-Salpeter Equation

P(1234) = P0(1234)+

+ P0(1256) [v(57)δ(56)δ(78)−W (56)δ(57)δ(68)]P(7834)

Intrinsic 4-point equation

Correct!It describes the (coupled) progation

of two particles, the electron andthe hole !

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter EquationBethe-Salpeter Equation

P(1234) = P0(1234)+

+ P0(1256) [v(57)δ(56)δ(78)−W (56)δ(57)δ(68)]P(7834)

Intrinsic 4-point equation

Correct!It describes the (coupled) progation

of two particles, the electron andthe hole !

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter EquationBethe-Salpeter Equation

P(1234) = P0(1234)+

+ P0(1256) [v(57)δ(56)δ(78)−W (56)δ(57)δ(68)]P(7834)

Intrinsic 4-point equation

Correct!It describes the (coupled) progation

of two particles, the electron andthe hole !

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Semiconductors

Albrecht et al., PRL 80, 4510 (1998)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Insulators

Sottile et al., PRB 76, 161103 (2007).

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Molecule (Na4)

Onida et al., PRL 75, 818 (1995)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Silicon Nanowires

Bruno et al., PRL 98, 036807 (2007)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Hexagonal Ice

Hahn et al., PRL 94, 37404 (2005)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: EELS of Silicon

Olevano and Reining, PRL 86, 5962 (2001)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Surface

Rohlfing et al., PRL 85, 005440 (2000)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation results: Surface

Rohlfing et al., PRL 85, 005440 (2000)

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation: State-of-the-art

• DFT - ground state

• GW - quasiparticle energies

• BSE - optical and dielectric properties

√several spectroscopies

√variety of systems

× Cumbersome Calculations

Intro MBPT & GW Linear BSE TDDFT

Bethe-Salpeter equation: State-of-the-art

• DFT - ground state

• GW - quasiparticle energies

• BSE - optical and dielectric properties

√several spectroscopies

√variety of systems

× Cumbersome Calculations

Intro MBPT & GW Linear BSE TDDFT

References and Literature

GW and BSE

• Hedin, Lundqvist, Solid State Physics 23, 1 (1969)

• Onida, Reining, Rubio, RMP 74, 601 (2002)

• Strinati, Riv Nuovo Cimento 11, 1 (1988)

TDDFT

• Runge, Gross, Kohn, PRL 52, 997 (1984), PRL 55, 2850(1985)

• Marques et al eds, Time Dependent Density FunctionalTheory, Springer (2006).

• Botti et al, Rep. Prog. Phys. 70, 357 (2007)

Matteo Gatti, PhD Thesis, http://etsf.polytechnique.fr/sites/default/files/users/matteo/matteo_thesis.pdf

Intro MBPT & GW Linear BSE TDDFT

Outline

Introduction and reminder of ground-state results

Photoemission via MBPT: GW approximation

Absorption and Loss spectroscopies: linear response quantities

Neutral excitations within MBPT: Bethe-Salpeter Equation

Neutral excitations within DFT: Time-Dependent DensityFunctional Theory

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

Single-particle polarizability

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

hartree, hartree-fock, dft, etc.

G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

χ0 =∑ij

φi (r)φ∗j (r)φ∗i (r′)φj(r

′)

ω − (εi − εj)

i

unoccupied states

occupied states

j

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

interacting system δn = χδVext

non-interacting system δnn−i = χ0δVtot

m

Density Functional Formalism

δn = δnn−i

δVtot = δVext + δVH + δVxc

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(1 +

δVH

δVext+δVxc

δVext

)δVH

δVext=δVH

δn

δn

δVext= vχ

δVxc

δVext=δVxc

δn

δn

δVext= fxcχ

with fxc = exchange-correlation kernel

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(1 +

δVH

δVext+δVxc

δVext

)δVH

δVext=δVH

δn

δn

δVext= vχ

δVxc

δVext=δVxc

δn

δn

δVext= fxcχ

with fxc = exchange-correlation kernel

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(1 +

δVH

δVext+δVxc

δVext

)δVH

δVext=δVH

δn

δn

δVext= vχ

δVxc

δVext=δVxc

δn

δn

δVext= fxcχ

χ = χ0 + χ0 (v + fxc)χwith fxc = exchange-correlation kernel

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(1 +

δVH

δVext+δVxc

δVext

)δVH

δVext=δVH

δn

δn

δVext= vχ

δVxc

δVext=δVxc

δn

δn

δVext= fxcχ

χ =[1− χ0 (v + fxc)

]−1χ0

with fxc = exchange-correlation kernel

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability

χδVext = χ0 (δVext + δVH + δVxc)

χ = χ0

(1 +

δVH

δVext+δVxc

δVext

)δVH

δVext=δVH

δn

δn

δVext= vχ

δVxc

δVext=δVxc

δn

δn

δVext= fxcχ

χ =[1− χ0 (v + fxc)

]−1χ0

with fxc = exchange-correlation kernel

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Polarizability χ in TDDFT

1. DFT ground-state calc. → φi , εi [Vxc ]

2. φi , εi → χ0 =∑

ij

φi (r)φ∗j (r)φ∗i (r′)φj (r

′)

ω−(εi−εj )

3.δVH

δn= v

δVxc

δn= fxc

variation of the potentials

4. χ = χ0 + χ0 (v + fxc)χ

A comment

• fxc =

δVxc

δn“any” other function

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Most important approximation for fxc

fxc = 0 RPA

f ALDAxc (r, r′) = δVxc (r)

δn(r′) δ(r − r′) ALDA

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Role of v

χ(r, r′, ω) = χ0(r, r′, ω) + χ0(r, r′′, ω)v(r′′, r′′′)χ(r′′′, r′, ω)

⟨χ(r, r′, ω)

⟩⇒⟨χ0(r, r′, ω)

⟩spectrum

(χ(|r − r′|, ω)

)spectrum

(χ(r, r′, ω)

)v contains all the information of the crystal localfield effects (local dishomogeneity of the system)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Role of v

χ(r, r′, ω) = χ0(r, r′, ω)

⟨χ(r, r′, ω)

⟩⇒⟨χ0(r, r′, ω)

⟩spectrum

(χ(|r − r′|, ω)

)spectrum

(χ(r, r′, ω)

)v contains all the information of the crystal localfield effects (local dishomogeneity of the system)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Role of v

χ(r, r′, ω) = χ0(r, r′, ω)

⟨χ(r, r′, ω)

⟩⇒⟨χ0(r, r′, ω)

⟩spectrum

(χ(|r − r′|, ω)

)spectrum

(χ(r, r′, ω)

)v contains all the information of the crystal localfield effects (local dishomogeneity of the system)

Intro MBPT & GW Linear BSE TDDFT

Linear Response Approach

Role of v

χ(r, r′, ω) = χ0(r, r′, ω) + χ0(r, r′′, ω)v(r′′, r′′′)χ(r′′′, r′, ω)

⟨χ(r, r′, ω)

⟩⇒⟨χ0(r, r′, ω)

⟩spectrum

(χ(|r − r′|, ω)

)spectrum

(χ(r, r′, ω)

)v contains all the information of the crystal localfield effects (local dishomogeneity of the system)

Intro MBPT & GW Linear BSE TDDFT

Spectra within DFT and TDDFT-RPA

Loss spectrum of Graphite

A.Marinopoulos et al. Phys.Rev.Lett 89, 76402 (2002)

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Inelastic X-ray scattering of Silicon

H-C.Weissker et al., Physical Review Letters 97, 237602 (2006)

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Photo-absorption cross section of Benzene

K.Yabana and G.F.Bertsch Int.J.Mod.Phys.75, 55 (1999)

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Absorption Spectrum of Silicon

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Absorption Spectrum of Argon

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Good results

• Photo-absorption ofsmall molecules

• ELS of solids

Bad results

• Absorption of solids

Why?

f ALDAxc is short-range

fxc(q→ 0) ∼ 1

q2

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Good results

• Photo-absorption ofsmall molecules

• ELS of solids

Bad results

• Absorption of solids

Why?

f ALDAxc is short-range

fxc(q→ 0) ∼ 1

q2

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Good results

• Photo-absorption ofsmall molecules

• ELS of solids

Bad results

• Absorption of solids

Why?

f ALDAxc is short-range

fxc(q→ 0) ∼ 1

q2

Intro MBPT & GW Linear BSE TDDFT

ALDA: Achievements and Shortcomings

Absorption of Silicon fxc = αq2

L.Reining et al. Phys.Rev.Lett. 88, 66404 (2002)

top related