examination of the influence of internal structure of ... · examination of the influence of...

Post on 04-May-2018

223 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Examination of the influence of internal structure of Coronal Mass Ejections (CMEs)

Introduction

Materials/Tools

Conclusions

Abstract

References

What's Next ?

The  main  purpose  of  this  research  is  to  determine  the  influence  of  internal  structure  of  Coronal  Mass  Ejec8ons  (CMEs)  on  their  propaga8on  in  the  Heliosphere  using  WSA-­‐ENLIL  Cone  Modeling1.  The  Integrated  Space  Weather  Analysis  System  (ISWA)  and  Stereo  analysis  tool  were  used  to  obtain  several  CME  parameters.    The  ENLIL  Cone  Model  was  used  to  run  90    simula8ons  for  different  cavity  parameters  of  CME  internal  structures.  The  rela8onship  between  the  cavity  and  CME  propaga8on  8me  and  Kp  index  was  studied    for  15  CME  events.  As  expected,  when  the  velocity  of  CME  is  higher  than  the  ambient  solar  wind  speed,  CME  with  smaller  cavity  (more  heavy  ones)  propagates  faster  than  the  same  size  CME  with  larger  cavity  (lighter  CMEs).  Quite  naturally  the  opposite  behavior  is  observed  when  the  velocity  of  CME  is  less  than  the  solar  ambient  wind  speed.  For  fast  CME  velocity  the  Kp  index  tends  to  decrease  as  the  cavity  increases  while  for  slow  CME  velocity  the  Kp  index  remains  constant.  This  research  is  very  important  for  improving  model  capability  to  forecast  space  weather.  

 [1]  Odstrcil.  "Distor8on  of  the  Interplanetary  Magne8c  Field  by  Three-­‐dimensional  Propaga8on  of  Coronal  Mass  Ejec8ons  in  a  Structured  Solar  Wind."  Geophysical  Research  104  (1999):  225-­‐28.  Print.  

 [2]  Taktakishvili,  Aleksandre,  Odstrcil,  and  P.  MacNeice.  "Model  Uncertain8es  in  Predic8ons  of  Arrival  of  Coronal  Mass  Ejec8ons  at  Earth  Orbit."  Space  Weather  8  (2010):  1-­‐9.  Print.  

 [3]  Taktakishvili,  Aleksandre,  Masha  Kuznetsova,  and  Anc  Pulkinnen.  "Valida8on  of  the  Coronal  Mass  Ejec8on  Predic8ons  at  the  Earth  Orbit  Es8mated  by  ENLIL  Heliosphere  Cone  Model."  Space  Weather  7  (2009):  1-­‐7.  Print  

A  con8nua8on  to  this  work  would  be  to  adjust  addi8onal  free  parameters  on  the  ENLIL  Cone  Model  so  that  ones  can  see  how  these  changes  influence  the  propaga8on  8me  of  CMEs.  

Fast vs Slow CME Events

The  WSA-­‐ENLIL  Cone  Modeling  tool  is  8me-­‐dependent  3D  MHD  model  of  the  heliosphere.  Its  inner  radial  boundary  is  located  beyond  the  sonic  point,  typically  at  21.5  or  30  solar  radii2.  This  model  is  used  to  improve  space  weather  forecas8ng.  ENLIL  uses  several    input  parameters  to  model    CME  propaga8on  8me  in  the  heliosphere  of  CMEs3.  One  of  these  parameters  is  the  CME  internal  structure  (cavity).  This  research  was  focused  on  analyzing  15  CME  events,  deriving  their  parameters  and  changing  the  cavity  parameter  to  understand  how  this  change  influences  the  propaga8on  8me  in  order  to  improve  space  weather  forecas8ng.    

The  results  confirm  that    lighter  CMEs  with  longer  cavity  adjust    

easier  towards  the  background  wind  condi8ons  so  slow  CMEs  are  picked  up  by  the  wind  and  fast  CMEs  are  decelerated  by  the  wind.  Three  different  Kp  es8ma8ons  were  used  for  each  event.  For  fast  CME  veloci8es  the  Kp  index  tends  to  decrease  as  the  cavity  increases  while  for  slow  CME  veloci8es  the  Kp  index  remains  constant.    Therefore,  the  cavity  parameter  could  play  a  key  role  on  improving  space  weather  forecas8ng.  

Figure1:  This  plot  shows  the  behavior  of  CME            propaga8on  hours  versus  cavity                              parameters  of  two  events.  The  doged          lines  represent  the  actual  propaga8on          8me  according  to  the  Advanced                              Composi8on  Explorer  (ACE)  satellite.            For  the  fast  CME  event,  the  cavity  that                  best  matched  the  actual  arrival  on  Earth        was  0.54.  

These  three  plots    show  that  for  CME  veloci8es,  Kp  index  tends  to  increase  as  the  cavity  increases  while  for  slow  CME  veloci8es,  Kp  index  remains  constant.    

Absolute Arrival Time of 15 CME Events

García  Burgos,  Axel  Embry  Riddle  Aeronau8cal  University;  Pulkkinen,  Anc  Catholic University of America (CUA);  Taktakishvili,  Aleksandre  University of Maryland, Baltimore County (UMBC)  and  Odstrcil,  Dusan  George Mason University (GMU)  

NASA Goddard Space Flight Center 15 Earth directed CME events were analyzed using the Integrated Space Weather Analysis System and the SOHO/STEREO

Analysis Tool.

MATLAB ENLIL Cone

Modeling SOHO/STEREO

Analysis Tool

Percentage change in propagation hours of 15 CME Events

Figure  2:  Fast  CMEs  show  larger  difference  in            change  (cavity=0,  reference  point)  of            propaga8on  hours  than  slow  ones.    

Change in Kp index of 15 CME Events Cavity=0 Cavity=0.5

Cavity=  rcav/r  

r  rcav  CME

The  following  plots  show  the  influence  of  CME  internal  structure  (cavity)  on  arrival  8me  of  Earth  directed  CME  events.  The  data  points  used  to  make    these  plots  were                                  

[0    0.1    0.3    0.5    0.7    0.9]  

These  three  plots  represent  the  influence  of  CME  internal  structure  on  the  geomagne8c  ac8vity  (Kp  index)  for  Earth  directed  CME  events.  It    ranges  from  0-­‐9  and  each  plot    shows  the  kp  index  for  three  different  assume  clock  angles.  

Figure  6:  This  plot  shows  the  error  in  hours  between  the  modeled                                CME  propaga8on  8me  and  the  actual  propaga8on  8me                                  according  to  the  ACE  satellite  observa8ons.  

Figure  3:  Kp  index  assume  clock  angle  90°                  vs  CME  cavity  parameters  

Figure  4:  Kp  index  assume  clock  angle  135°  vs  CME  cavity  parameters  

Figure  5:  Kp  index  assume  clock  angle  180°                          vs  CME  cavity  parameters  

CME  Event la8tude longitude Rmajor  (degree) Vcld  (km/s) 2012-­‐03-­‐07 4 -­‐23 65 1800 2012-­‐07-­‐12 -­‐14 -­‐9 53 1358 2011-­‐07-­‐28 0 15 24 1198

2012-­‐03-­‐09   20   0   45   1150  

2010-­‐04-­‐03 -­‐23 25 60 1071 2011-­‐02-­‐15 -­‐20 15 35 920 2011-­‐06-­‐02 5 30 60 815 2011-­‐06-­‐21 28 1 34 812 2012-­‐08-­‐04 -­‐10 -­‐25 42 812

2010-­‐08-­‐01   34   17   52   790  

2011-­‐06-­‐21 -­‐19 25 39 766 2011-­‐04-­‐07 -­‐5 -­‐20 38 550 2011-­‐06-­‐14 16 5 24 487 2010-­‐09-­‐11 17 -­‐15 36 453 2010-­‐09-­‐11 9 -­‐1.30 33 336

Table  1:  This  table  shows  the  parameters  obtained  with  SOHO/STEREO  Analysis  Tool  of  15  CME          events    

Table of CME events

top related