evolution reaction alloys anchored on graphene for highly ... · metal-organic frameworks derived...

Post on 14-Aug-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Supporting Information

Metal-Organic Frameworks Derived Nitrogen-Doped Carbon-RhNi

Alloys Anchored on Graphene for Highly Efficient Hydrogen

Evolution Reaction

Xian-Ming Xia,†a Cheng-ZongYuan,†b Gang Wang,b Cong Ling,b Tan

Zhao,b Wan-Qing Li,a Yuck-Yun Cheang,*c Sheng-Liang Zhong*a and

An-Wu Xu*b

a College of Chemistry and Chemical Engineering, Jiangxi Normal

University, Nanchang 330022, P. R. China. E-mail: slzhong@jxnu.edu.cn

b Division of Nanomaterials and Chemistry, Hefei National Laboratory

for Physical Sciences at the Microscale, The First Affiliated Hospital,

University of Science and Technology of China, Hefei 230026, P. R.

China. E-mail: anwuxu@ustc.edu.cn.

c The First Affiliated hospital of Guangdong Pharmaceutical University,

Guangzhou 510080, China. 13631322559@163.com

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.This journal is © the Partner Organisations 2020

2

Fig. S1 SEM images of (a) NC-Ni, (b) NC-Rh, (c) NC-RhNi and (d) NC-

RhNi/rGO.

3

Fig. S2 SEM images of different ratio of Rh and Ni (a) 1:1, (b) 1:2, (c)

1:3 and (d) 2:1.

4

Fig. S3 (a) XRD patterns for rGO, NC-Ni, NC-Ni/rGO, NC-RhNi, NC-

RhNi/rGO, RhNi-MOF/GO, NC-Rh/rGO and NC-Rh, (b) XRD patterns

of samples with different ratios of Rh to Ni.

5

885 880 875 870 865 860 855 850

Sat. Nix+2p1/2

Ni 2p1/2 Sat.

Nix+2p3/2 Ni 2p3/2

Inte

nsity (a.u

.)

Binding Energy (eV)

Ni 2p

298 296 294 292 290 288 286 284 282 280 278

Inte

nsity (a.u

.)

C=O

C-N/C-O

C-C/C=C

C 1s

Binding Energy (eV)

a b

Fig. S4 High-resolution XPS spectra for (a) Ni 2p and (b) C 1s.

Fig. S5 Energy-dispersive spectroscopic (EDS) pattern of NC-RhNi/rGO.

6

200 400 600 800 1000 1200 1400 1600 1800

Inte

nsity

(a.u

.)

900 OC

800 OC

700 OC

ID/IG = 0.98

ID/IG = 1.01G

ID/IG = 0.96

D

Raman shift (cm-1)

Fig. S6 Raman spectra of the samples calcinated at different temperatures.

7

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1-260-240-220-200-180-160-140-120-100-80-60-40-20

0

NC-RhNi NC-RhNi/rGO

E (V vs. RHE)

j (m

A cm

-2)

Fig. S7 Linear sweep polarization curves of NC-RhNi and NC-RhNi/rGO

obtained in 1.0 M KOH at a scan rate of 5 mV s-1.

8

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1-260-240-220-200-180-160-140-120-100-80-60-40-20

0

1:1 1:2 1:3 2:1

E (V vs. RHE)

j (m

A cm

-2)

Fig. S8 Linear sweep polarization curves of NC-RhNi/rGO with different

rate of Rh to Ni obtained in 1.0 M KOH at a scan rate of 5 mV s-1.

9

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1-250

-200

-150

-100

-50

0

700C

900 C 800 C

j (m

A cm

-2)

E (V vs. RHE )

Fig. S9 Linear sweep polarization curves of NC-RhNi/rGO obtained by

different calcinate temperatures at a scan rate of 5 mV s-1 in 1.0 M KOH.

10

0.4 0.6 0.8 1.0 1.2 1.40.00

0.02

0.04

0.06

0.08

0.10NC-Rh/rGONC-Rh

20%Pt/CNC-RhNi/rGO

62 mV dec-1

82 mV dec

-1

119 m

V dec

-1

Ove

rpot

entia

l (V)

Log (\j\ (mA cm-2))

54 mV dec-1

20 40 60 80 1000.51.01.52.02.53.03.54.04.55.05.5

18.74 mF cm-1

23.88 mF cm-1

29.54 mF cm-1

NC-Rh NC-Ni/rGO NC-Rh/rGO NC-RhNi/rGO

Scan rate (mV s-1)

50.18 mF cm-1

j 0.

3 v(m

A cm

-2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.20

0.25

0.30

0.35

0.40

Log (\j\ (mA cm-2))

162 mV dec

-1

NC-Ni/rGO

Ove

rpot

entia

l (V)

a b

dc

0

50

100

150

200

250

300

350

400

162

373 Overpotential 10 mV Tafel slope (mV dec-1)

NC-Ni/rGO

Fig. S10 (a) the corresponding Tafel plots of NC-Rh/rGO, NC-RhNi/rGO,

NC-Rh and 20% Pt/C. (b) Estimation of electrochemical double-layer

capacitance (Cdl) for various electrocatalysts by plotting the difference in

current densities at 0.3 V versus RHE for NC-Ni/rGO, NC-RhNi/rGO,

NC-Rh/rGO and NC-Rh. (c) The corresponding Tafel plot of NC-Ni/rGO,

and (d) Comparison of overpotential at a current density of 10 mA cm-2

and Tafel slope of NC-Ni/rGO in 1.0 M KOH.

11

0.20 0.25 0.30 0.35 0.40

-4

-3

-2

-1

0

1

2

3

E (V vs. RHE)

20 mV s-1

100 mV s-1

80 mV s-1 60 mV s-1 40 mV s-1

NC-RhNi/rGOj (

mA

cm-2)

0.20 0.25 0.30 0.35 0.40

-3

-2

-1

0

1NC-Rh/rGO

20 mV s-1

100 mV s-1 80 mV s-1 60 mV s-1 40 mV s-1

E (V vs. RHE)

j (m

A cm

-2)

0.20 0.25 0.30 0.35 0.40-3

-2

-1

0

1NC-Rh

20mV s-1

100mV s-1

80mV s-1 60mV s-1 40mV s-1

E (V vs. RHE)

j (m

A cm

-2)

0.20 0.25 0.30 0.35 0.40

-3

-2

-1

0

1

2NC-Ni/rGO

20 mV s-1

100 mV s-1 80 mV s-1 60 mV s

-1 40 mV s-1

E (V vs. RHE)

j (m

A cm

-2)

a b

dc

Fig. S11 Cyclic voltammograms (CV) curves of (a) NC-RhNi/rGO, (b)

NC-Rh/rGO, (c) NC-Rh, and (d) NC-Ni/rGO in the region of 0.20-0.40V

vs. RHE in 1.0 M KOH at various scan rates.

12

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1-600-550-500-450-400-350-300-250-200-150-100-50

0 NC-RhNi NC-RhNi/rGO

E (V vs. RHE)

j (m

A cm

-2)

Fig. S12 Linear sweep polarization curves of NC-RhNi/rGO and NC-

RhNi obtained in 0.5 M H2SO4 at a scan rate of 5 mV s-1.

13

0.0 0.2 0.4 0.6 0.8 1.0

0.20

0.25

0.30

0.35

0.40

Log (\j\ (mA cm-2))

NC-Ni/rGO

221 mv d

ec-1

Overp

ote

ntial (V

)

050

100150200250300350400450

NC-Ni/rGO

Overpotential 10 mV Tafel slope (mV dec-1)

415

221

a b

Fig. S13 (a) The corresponding Tafel plot of NC-Ni/rGO and (b)

Comparison of overpotential at a current density of 10 mA cm-2 and Tafel

slope of NC-Ni/rGO in 0.5 M H2SO4.

14

Table S1. The atomic ratio of NC-RhNi/rGO obtained from XPS spectra.

Element Rh 3d Ni 2p C 1s N 1s O 1s

NC-RhNi/rGO 0.49% 1.75% 83.92% 5.73% 8.11

%

Table S2. Comparison of HER performance with that of recently

reported alloy electrocatalysts.

Electrocatalysts Electrolyte η10

(mV)Tafel slope(mV dec-1)

References

Cu-Ni nanocages

1 M KOH 140 79 [1]

NixCuy@NG-NC 1 M KOH 122 84.2 [2]IrNi@OC 1 M KOH 27 50 [3]

Pt-Ni hetero 1 M KOH 48 [4]CoRux@N-C 1 M KOH

0.5 M H2SO4

2794

7364

[5]

PtRh ANDs 0.5 M H2SO4 25 32 [6]NiRu@N–C 0.5 M H2SO4 50 36 [7]CoNi@NC 0.1 M H2SO4 142 105 [8]NiCu@C 0.5 M H2SO4

1 M KOH4874

63.294.5

[9]

RuAu SAAs 1 M KOH 24 37 [10]hcp Pt–Ni 1 M KOH 65 78 [11]

NC-RhNi/rGO 1 M KOH0.5 M H2SO4

3734

5422

This work

References

1. Z. X. Li, C. C. Yu, Y. Y. Wen, Y. Gao, X. F. Xing, Z. T. Wei, H. Sun,

Y. W. Zhang and W. Y. Song, Mesoporous Hollow Cu−Ni Alloy

Nanocage from Core−Shell Cu@Ni Nanocube for Efficient Hydrogen

15

Evolution Reaction, ACS Catal., 2019, 9, 5084-5095.

2. B. Liu, H. Q. Peng, J. Y. Cheng, K. Zhang, D. Chen, D. Shen, S. L.

Wu, T. P. Jiao, X. Kong, Q. L. Gao, S. Y. Bu, C. S. Lee and W. J. Zhang,

Nitrogen-Doped Graphene-Encapsulated Nickel–Copper Alloy

Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution

Reaction, Small, 2019, 1901545.

3. S. P. Gong, C. L. Wang, P. Jiang, K. Yang, J. Lu, M. X. Huang, S.

Chen, J. Z. Wang and Q. W. Chen, O Species Decorated Graphene Shell

Encapsulating Iridium-Nickel alloy as Efficient Electrocatalysts towards

Hydrogen Evolution Reaction, J. Mater. Chem. A, 2019, 7, 15079-15088.

4. C. Zhang, B. H. Chen, D. H. Mei and X. Liang, The OH--driven

synthesis of Pt–Ni nanocatalysts with atomic segregation for alkaline

hydrogen evolution reaction, J. Mater. Chem. A, 2019, 7, 5475-5481.

5. Z. H. Wei, Y. Liu, Z. K. Peng, H. Q. Song, Z. Y. Liu, B. Z. Liu, B. J.

Li, B. Yang and S. Y. Lu, Cobalt-Ruthenium Nanoalloys Parceled in

Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional

Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia

Borane, ACS Sustainable Chem. Eng., 2019, 7, 7014-7023.

6. L. S. Zhang, J. J. Lu, S. B. Yin, L. Luo, S. Y. Jing, A. Brouzgou, J.

Chen, P. K. Shen and P. Tsiakaras, One-Pot Synthesized Boron-Doped

RhFe Alloy with Enhanced Catalytic Performance for Hydrogen

Evolution Reaction, Appl. Catal. B Environ., 2018, 230, 58–64.

16

7. Y. Xu, S. L. Yin, C. J. Li, K. Deng, H. R. Xue, X. N. Li, H. J. Wang

and L. Wang, Low-ruthenium-content NiRu nanoalloys encapsulated in

nitrogen-doped carbon as highly efficient and pH-universal

electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A,

2018, 6, 1376.

8. J. Deng, P. J. Ren, D. H. Deng and X. H. Bao, Enhanced Electron

Penetration through an Ultrathin Graphene Layer for Highly Efficient

Catalysis of the Hydrogen Evolution Reaction, Angew. Chem. Int. Ed.,

2015, 54, 2100 –2104.

9. Y. Shen, Y. F. Zhou, D. Wang, X. Wu, J. Li and J. Y. Xi, Nickel–

Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts

for Hydrogen Evolution Reaction, Adv. Energy Mater., 2018, 8, 1701759.

10. C. H. Chen, D. Y. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K.

Dong, S. Z. Qiao, H. Liu and X. W. Du, Ruthenium-Based Single-Atom

Alloy with High Electrocatalytic Activity for Hydrogen Evolution, Adv.

Energy Mater., 2019, 9, 1803913.

11. Z. M. Cao, Q. L. Chen, J. W. Zhang, H. Q. Li, Y. Q. Jiang, S. Y. Shen,

G. Fu, B. A. Lu, Z. X. Xie and L. S. Zheng, Platinum-nickel alloy

excavated nano-multipods with hexagonal close-packed structure and

superior activity towards hydrogen evolution reaction, Nat. Commun.,

2017, 8, 15131.

top related