energy the ability to perform work ex: your heart muscle does work every time it beats two basic...

Post on 18-Jan-2016

215 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ENERGY

•The ability to perform work•Ex: your heart muscle does work every time it beats

•Two basic forms of energy•Potential•kinetic

POTENTIAL ENERGY

•Is stored energy due to an object’s position or arrangement

KINETIC ENERGY

•Energy of motion•Anything that is moving•Kinetic - “motion”

THERMAL ENERGY

•Energy that has been transferred

•From areas that are warmer to cooler

CHEMICAL ENERGY

•Organic compounds store energy (potential) in the way their atoms are arranged.

•This is called chemical energy

These organisms are called AUTOTROPHS or PRODUCERS.

These organisms are called HETEROTROPHS or CONSUMERS.

Some Organisms use sunlight to make food in a process called photosynthesis:

Some organisms cannot use sunlight to make food-they must eat instead:

Types of Organisms

Cellular Respiration

No matter how organisms get their food ALL get their energy FROM THE FOOD in the SAME way.

Types of Organisms

Cellular Respiration is a Process in which organisms create ATP from the food they make or eat.

Cellular Respiration

During Cellular Respiration we take potential energy (stored energy) called chemical energy stored in the bonds of glucose and turn it into ATP.

ATP is called free energy because it is available to do any type of work needed in our cells called Kinetic Energy (energy available for work)

The amount of energy released is measure in calories or kilocalories

The more energy a type of food can release the more calories it has

Cellular Respiration

• Before the energy can be used, it is first transformed into a form which the organism can handle easily.

• This special carrier of energy is the molecule

• adenosine triphosphate, or ATP.

ATP’S STRUCTURE

• An ATP molecule is composed of three components.

• 1st - A sugar molecule called RIBOSE

• 2nd - Attached to one side of the ribose is a base (a group consisting of linked rings of carbon and nitrogen atoms); in this case the base is adenine.

• 3rd - Attached to the other side of the ribose is a string of phosphates

• These phosphates are the key to the activity of ATP.

ATP consists of a base, in this case adenine (red), a ribose (magenta) and a phosphate chain (blue).

HOW IT WORKS

• ATP works by losing the endmost phosphate group when instructed to do so by an enzyme.

• This reaction releases a lot of energy, which the organism can then use to build proteins, contact muscles, etc

The reaction product is adenosine diphosphate (ADP),

•Even more energy can be extracted by removing a second phosphate group to produce adenosine monophosphate (AMP).

• When the organism is resting and

energy is not immediately needed, the reverse reaction takes place and the phosphate group is reattached to the molecule using energy obtained from food or sunlight.

• The ATP molecule acts as a chemical 'battery', storing energy when it is not needed, but able to release it instantly when the organism requires it.

CELLULAR RESPIRATION

CELLULAR RESPIRATION• A catabolic, exergonic, oxygen (O2) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H2O).

C6H12O6 + 6O2 6CO2 + 6H2O + energy

glucose ATP

QUESTION:

•In what kinds organisms does cellular respiration take place?

PLANTS AND ANIMALS•Plants - Autotrophs: self-producers.

•Animals - Heterotrophs: consumers.

MITOCHONDRIA

• Organelle where cellular respiration takes place.

Innermembrane

Outermembrane

Innermembrane space

MatrixCristae

BREAKDOWN OF CELLULAR RESPIRATION

• Three main parts (reactions).

1. Glycolysis (splitting of sugar)a. cytosol, just outside of mitochondria.

BREAKDOWN OF CELLULAR RESPIRATION

2. Krebs Cycle (Citric Acid Cycle)a. mitochondrial matrix

3. Electron Transport Chain (ETC a. inner mitochondrial membrane.

1. GLYCOLYSIS

• Occurs in the cytosol just outside of mitochondria.

• Two phases:

A. Energy investment phase

B. Energy yielding phase

1. GLYCOLYSIS

A. Energy Investment Phase:

Glucose (6C)

Glyceraldehyde phosphate (2 - 3C) (G3P or GAP)

2 ATP - used0 ATP - produced0 NADH - produced

2ATP

2ADP + P

C-C-C-C-C-C

C-C-C C-C-C

1. GLYCOLYSIS

B. Energy Yielding Phase

Glyceraldehyde phosphate (2 - 3C) (G3P or GAP)

Pyruvate (2 - 3C) (PYR)

0 ATP - used4 ATP - produced2 NADH - produced

4ATP

4ADP + P

C-C-C C-C-C

C-C-C C-C-C

GAP GAP

(PYR) (PYR)

1. GLYCOLYSIS

• Total Net Yield

2 - 3C-Pyruvate (PYR)2 - ATP 2 - NADH

2. KREBS CYCLE (CITRIC ACID CYCLE)

• Location: mitochondrial matrix.

• Acetyl CoA (2C) bonds to Oxalacetic acid (4C - OAA) to make Citrate (6C).

• It takes 2 turns of the krebs cycle to make 1 glucose molecule.

MitochondrialMatrix

2. KREBS CYCLE (CITRIC ACID CYCLE)

KrebsCycle

1 Acetyl CoA (2C)

3 NAD+

3 NADHFAD

FADH2

ATPADP + P

(one turn)

OAA (4C) Citrate (6C)

2 CO2

2. KREBS CYCLE (CITRIC ACID CYCLE)

KrebsCycle

2 Acetyl CoA (2C)

6 NAD+

6 NADH2 FAD

2 FADH2

2 ATP2 ADP + P

(two turns)

OAA (4C)Citrate (6C)

4 CO2

2. KREBS CYCLE (CITRIC ACID CYCLE)

• Total net yield (2 turns of krebs cycle)

1. 2 - ATP 2. 6 - NADH3. 2 - FADH2

4. 4 - CO2

3. ELECTRON TRANSPORT CHAIN (ETC) AND OXIDATIVE PHOSPHORYLATION (CHEMIOSMOSIS)

• Location: inner mitochondrial membrane.

• Uses ETC and ATP Synthase (enzyme) to make ATP.

• ETC pumps H+ (protons) across innermembrane (lowers pH in innermembrane space).Inner

MitochondrialMembrane

3. ELECTRON TRANSPORT CHAIN (ETC) AND OXIDATIVE PHOSPHORYLATION (CHEMIOSMOSIS)

• The H+ then moves via diffusion through ATP Synthase to make ATP.

• All NADH and FADH2 converted to ATP during this stage of cellular respiration.

• Each NADH converts to 3 ATP.

• Each FADH2 converts to 2 ATP (enters the ETC at a lower level than NADH).

TOTAL ATP YIELD

1. 04 ATP – glycolysis and krebs cycle2. 34 ATP - ETC 38 ATP - TOTAL YIELD

ATP

MAXIMUM ATP YIELD FOR CELLULAR RESPIRATION (EUKARYOTES)

36 ATP (maximum per glucose)

Glucose

Glycolysis

2ATP 4ATP 6ATP 18ATP 4ATP 2ATP

2 ATP(substrate-levelphosphorylation)

2NADH

2NADH

6NADH

KrebsCycle

2FADH2

2 ATP(substrate-levelphosphorylation)

2 Pyruvate

2 Acetyl CoA

ETC and Oxidative Phosphorylation

Cytosol

Mitochondria

FERMENTATION

• Occurs in cytosol when “NO Oxygen” is present (called anaerobic).

• Remember: glycolysis is part of fermentation.

• Two Types:

1. Alcohol Fermentation

2. Lactic Acid Fermentation

ALCOHOL FERMENTATION

• Plants and Fungi beer and wine

glucose

Glycolysis

CCCCCC

CCC

2 Pyruvic acid

2ATP2ADP+ 2

2NADH

P

2 NAD+

CC

2 Ethanol2CO2

released

2NADH 2 NAD+

LACTIC ACID FERMENTATION

• Animals (pain in muscle after a workout).

2 Lactic acid

2NADH 2 NAD+

CCC

Glucose

GlycolysisCCC

2 Pyruvic acid

2ATP2ADP+ 2

2NADH

P

2 NAD+

CCCCCC

LACTIC ACID FERMENTATION

• End Products: Lactic acid fermentation

2 - ATP 2 - Lactic Acid molecules

ALCOHOL FERMENTATION

• End Products: Alcohol fermentation

2 - ATP

2 - CO2

2 – molecules of ethanol

QUESTION:

•In addition to glucose, what other various food molecules are use in Cellular Respiration?

CATABOLISM OF VARIOUSFOOD MOLECULES

• Other organic molecules used for fuel.

1. Carbohydrates: polysaccharides

2. Fats: glycerol’s and fatty acids

3. Proteins: amino acids

top related