elementary principles of chemical processes_r. m. felder and r. w. rousseau.pdf

Post on 02-Jun-2018

225 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 1/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 2/154

Book Description

Title:  Elementary Principles Of Chemical Processes

Author:  R. M. Felder And R. W. Rousseau

Publisher:  Wiley India Pvt. Ltd., New Delhi.

Edition:   3

Year:   2010

ISBN:   978-81-265-1582-0

1

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 3/154

Scilab numbering policy used in this document and the relation to theabove book.

Exa  Example (Solved example)

Eqn  Equation (Particular equation of the above book)

AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

2

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 4/154

Contents

List of Scilab Codes   4

2 Introduction To Engineering Calculations   13

3 Processes and Process Variables   20

4 Fundamentals Of Material Balances   30

5 Single Phase Systems   62

6 Multiphase Systems   72

7 Energy And Energy Balances   89

8 Balances On Nonreactive Processes   101

9 Balances On Reactive Processes   115

11 Balances on Transient Processes   129

3

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 5/154

List of Scilab Codes

Exa 2.2.1 chapter 2 example 1   . . . . . . . . . . . . . . . . . . . 13Exa 2.3.1 chapter 2 example 2   . . . . . . . . . . . . . . . . . . . 14Exa 2.4.1 chapter 2 example 3   . . . . . . . . . . . . . . . . . . . 15Exa 2.5.2 chapter 2 example 4   . . . . . . . . . . . . . . . . . . . 16Exa 2.7.1 chapter 2 example 5   . . . . . . . . . . . . . . . . . . . 17Exa 2.7.2 chapter 2 example 6   . . . . . . . . . . . . . . . . . . . 19Exa 3.1.1 chapter 3 example 1   . . . . . . . . . . . . . . . . . . . 20Exa 3.1.2 chapter 3 example 2   . . . . . . . . . . . . . . . . . . . 21Exa 3.3.1 chapter 3 example 3   . . . . . . . . . . . . . . . . . . . 22Exa 3.3.2 chapter 3 example 4   . . . . . . . . . . . . . . . . . . . 24Exa 3.3.3 chapter 3 example 5   . . . . . . . . . . . . . . . . . . . 24Exa 3.3.4 chapter 3 example 6   . . . . . . . . . . . . . . . . . . . 26Exa 3.3.5 chapter 3 example 7   . . . . . . . . . . . . . . . . . . . 26

Exa 3.4.1 chapter 3 example 8   . . . . . . . . . . . . . . . . . . . 27Exa 3.4.2 chapter 3 example 9   . . . . . . . . . . . . . . . . . . . 28Exa 3.5.2 chapter 3 example 10   . . . . . . . . . . . . . . . . . . 28Exa 4.2.1 chapter 4 example 1   . . . . . . . . . . . . . . . . . . . 30Exa 4.2.2 chapter 4 example 2   . . . . . . . . . . . . . . . . . . . 31Exa 4.2.3 chapter 4 example 3   . . . . . . . . . . . . . . . . . . . 32Exa 4.2.4 chapter 4 example 4   . . . . . . . . . . . . . . . . . . . 33Exa 4.3.1 chapter 4 example 5   . . . . . . . . . . . . . . . . . . . 34Exa 4.3.2 chapter 4 example 6   . . . . . . . . . . . . . . . . . . . 35Exa 4.3.3 chapter 4 example 7   . . . . . . . . . . . . . . . . . . . 37Exa 4.3.5 chapter 4 example 8   . . . . . . . . . . . . . . . . . . . 37

Exa 4.4.1 chapter 4 example 9   . . . . . . . . . . . . . . . . . . . 39Exa 4.4.2 chapter 4 example 10   . . . . . . . . . . . . . . . . . . 42Exa 4.5.1 chapter 4 example 11   . . . . . . . . . . . . . . . . . . 43Exa 4.5.2 chapter 4 example 12   . . . . . . . . . . . . . . . . . . 46

4

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 6/154

Exa 4.6.1 chapter 4 example 13   . . . . . . . . . . . . . . . . . . 47

Exa 4.6.3 chapter 4 example 14   . . . . . . . . . . . . . . . . . . 49Exa 4.7.2 chapter 4 example 15   . . . . . . . . . . . . . . . . . . 50Exa 4.7.3 chapter 4 example 16   . . . . . . . . . . . . . . . . . . 52Exa 4.8.1 chapter 4 example 17   . . . . . . . . . . . . . . . . . . 54Exa 4.8.2 chapter 4 example 18   . . . . . . . . . . . . . . . . . . 55Exa 4.8.3 chapter 4 example 19   . . . . . . . . . . . . . . . . . . 56Exa 4.8.4 chapter 4 example 20   . . . . . . . . . . . . . . . . . . 58Exa 4.9.1 chapter 4 example 21   . . . . . . . . . . . . . . . . . . 59Exa 5.1.1 chapter 5 example 1   . . . . . . . . . . . . . . . . . . . 62Exa 5.2.1 chapter 5 example 2   . . . . . . . . . . . . . . . . . . . 63Exa 5.2.2 chapter 5 example 3   . . . . . . . . . . . . . . . . . . . 64

Exa 5.2.3 chapter 5 example 4   . . . . . . . . . . . . . . . . . . . 64Exa 5.2.4 chapter 5 example 5   . . . . . . . . . . . . . . . . . . . 65Exa 5.2.5 chapter 5 example 6   . . . . . . . . . . . . . . . . . . . 66Exa 5.3.1 chapter 5 example 7   . . . . . . . . . . . . . . . . . . . 67Exa 5.3.2 chapter 5 example 8   . . . . . . . . . . . . . . . . . . . 68Exa 5.4.1 chapter 5 example 9   . . . . . . . . . . . . . . . . . . . 69Exa 5.4.2 chapter 5 example 10   . . . . . . . . . . . . . . . . . . 70Exa 5.4.3 chapter 5 example 11   . . . . . . . . . . . . . . . . . . 71Exa 6.1.1 chapter 6 example 1   . . . . . . . . . . . . . . . . . . . 72Exa 6.3.1 chapter 6 example 2   . . . . . . . . . . . . . . . . . . . 73

Exa 6.3.2 chapter 6 example 3   . . . . . . . . . . . . . . . . . . . 74Exa 6.3.3 chapter 6 example 4   . . . . . . . . . . . . . . . . . . . 75Exa 6.4.1 chapter 6 example 5   . . . . . . . . . . . . . . . . . . . 76Exa 6.4.2 chapter 6 example 6   . . . . . . . . . . . . . . . . . . . 78Exa 6.5.1 chapter 6 example 7   . . . . . . . . . . . . . . . . . . . 79Exa 6.5.2 chapter 6 example 8   . . . . . . . . . . . . . . . . . . . 80Exa 6.5.3 chapter 6 example 9   . . . . . . . . . . . . . . . . . . . 82Exa 6.5.4 chapter 6 example 10   . . . . . . . . . . . . . . . . . . 83Exa 6.6.1 chapter 6 example 11   . . . . . . . . . . . . . . . . . . 84Exa 6.6.2 chapter 6 example 12   . . . . . . . . . . . . . . . . . . 85Exa 6.7.1 chapter 6 example 13   . . . . . . . . . . . . . . . . . . 86

Exa 7.2.1 chapter 7 example 1   . . . . . . . . . . . . . . . . . . . 89Exa 7.2.2 chapter 7 example 2   . . . . . . . . . . . . . . . . . . . 90Exa 7.4.1 chapter 7 example 3   . . . . . . . . . . . . . . . . . . . 90Exa 7.4.2 chapter 7 example 4   . . . . . . . . . . . . . . . . . . . 92Exa 7.5.1 chapter 7 example 5   . . . . . . . . . . . . . . . . . . . 92

5

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 7/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 8/154

AP 8 9.5.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 134

AP 9 9.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 134AP 10 9.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 134AP 11 9.1.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 134AP 12 9.1.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 135AP 13 8.5.5.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 135AP 14 8.5.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 135AP 15 8.5.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 135AP 16 8.4.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 136AP 17 8.4.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 136AP 18 8.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 136AP 19 8.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 136

AP 20 8.3.5.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 136AP 21 8.3.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 137AP 22 8.3.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 137AP 23 8.3.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 137AP 24 8.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 137AP 25 7.7.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 137AP 26 7.7.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 138AP 27 771.sci . . . . . . . . . . . . . . . . . . . . . . . . . . . 138AP 28 7.6.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 138AP 29 7.6.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 138

AP 30 7.6.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 139AP 31 7.5.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 139AP 32 7.5.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 139AP 33 7.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 139AP 34 7.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 140AP 35 7.2.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 140AP 36 7.2.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 140AP 37 6.7.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 140AP 38 6.6.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 140AP 39 6.6.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 141AP 40 6.5.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 141

AP 41 6.5.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 141AP 42 6.5.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 141AP 43 6.5.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 141AP 44 6.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 142AP 45 6.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 9/154

AP 46 6.3.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 142

AP 47 6.3.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 142AP 48 6.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 143AP 49 6.1.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 143AP 50 5.4.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 143AP 51 5.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 143AP 52 5.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 144AP 53 5.3.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 144AP 54 5.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 144AP 55 5.2.5.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 144AP 56 5.2.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 145AP 57 5.2.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 145

AP 58 5.2.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 145AP 59 5.2.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 145AP 60 5.1.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 145AP 61 4.9.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 146AP 62 4.8.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 146AP 63 4.8.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 146AP 64 4.8.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 146AP 65 4.8.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 146AP 66 4.7.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 147AP 67 4.7.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 147

AP 68 4.6.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 147AP 69 4.6.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 147AP 70 4.5.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 148AP 71 4.5.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 148AP 72 4.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 148AP 73 4.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 148AP 74 4.3.5.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 149AP 75 4.3.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 149AP 76 4.3.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 149AP 77 4.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 149AP 78 4.2.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 149

AP 79 4.2.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 150AP 80 4.2.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 150AP 81 4.2.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 150AP 82 3.5.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 150AP 83 3.4.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 10/154

AP 84 3.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 151

AP 85 3.3.5.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 151AP 86 3.3.4.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 151AP 87 3.3.3.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 151AP 88 3.3.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 151AP 89 3.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 90 3.1.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 91 3.1.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 92 2.7.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 93 2.7.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 94 2.5.2.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 152AP 95 2.4.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 153

AP 96 2.3.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 153AP 97 2.2.1.sci   . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 11/154

List of Figures

2.1 chapter 2 example 1   . . . . . . . . . . . . . . . . . . . . . . 142.2 chapter 2 example 2   . . . . . . . . . . . . . . . . . . . . . . 152.3 chapter 2 example 3   . . . . . . . . . . . . . . . . . . . . . . 152.4 chapter 2 example 4   . . . . . . . . . . . . . . . . . . . . . . 162.5 chapter 2 example 5   . . . . . . . . . . . . . . . . . . . . . . 172.6 chapter 2 example 6   . . . . . . . . . . . . . . . . . . . . . . 18

3.1 chapter 3 example 1   . . . . . . . . . . . . . . . . . . . . . . 213.2 chapter 3 example 2   . . . . . . . . . . . . . . . . . . . . . . 223.3 chapter 3 example 3   . . . . . . . . . . . . . . . . . . . . . . 233.4 chapter 3 example 4   . . . . . . . . . . . . . . . . . . . . . . 243.5 chapter 3 example 5   . . . . . . . . . . . . . . . . . . . . . . 253.6 chapter 3 example 6   . . . . . . . . . . . . . . . . . . . . . . 253.7 chapter 3 example 7   . . . . . . . . . . . . . . . . . . . . . . 263.8 chapter 3 example 8   . . . . . . . . . . . . . . . . . . . . . . 273.9 chapter 3 example 9   . . . . . . . . . . . . . . . . . . . . . . 283.10 chapter 3 example 10   . . . . . . . . . . . . . . . . . . . . . . 28

4.1 chapter 4 example 1   . . . . . . . . . . . . . . . . . . . . . . 304.2 chapter 4 example 2   . . . . . . . . . . . . . . . . . . . . . . 314.3 chapter 4 example 3   . . . . . . . . . . . . . . . . . . . . . . 324.4 chapter 4 example 4   . . . . . . . . . . . . . . . . . . . . . . 334.5 chapter 4 example 5   . . . . . . . . . . . . . . . . . . . . . . 344.6 chapter 4 example 6   . . . . . . . . . . . . . . . . . . . . . . 35

4.7 chapter 4 example 7   . . . . . . . . . . . . . . . . . . . . . . 364.8 chapter 4 example 8   . . . . . . . . . . . . . . . . . . . . . . 384.9 chapter 4 example 9   . . . . . . . . . . . . . . . . . . . . . . 404.10 chapter 4 example 10   . . . . . . . . . . . . . . . . . . . . . . 414.11 chapter 4 example 11   . . . . . . . . . . . . . . . . . . . . . . 44

10

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 12/154

4.12 chapter 4 example 12   . . . . . . . . . . . . . . . . . . . . . . 45

4.13 chapter 4 example 13   . . . . . . . . . . . . . . . . . . . . . . 474.14 chapter 4 example 14   . . . . . . . . . . . . . . . . . . . . . . 494.15 chapter 4 example 15   . . . . . . . . . . . . . . . . . . . . . . 504.16 chapter 4 example 16   . . . . . . . . . . . . . . . . . . . . . . 524.17 chapter 4 example 17   . . . . . . . . . . . . . . . . . . . . . . 544.18 chapter 4 example 18   . . . . . . . . . . . . . . . . . . . . . . 554.19 chapter 4 example 19   . . . . . . . . . . . . . . . . . . . . . . 564.20 chapter 4 example 20   . . . . . . . . . . . . . . . . . . . . . . 584.21 chapter 4 example 21   . . . . . . . . . . . . . . . . . . . . . . 60

5.1 chapter 5 example 1   . . . . . . . . . . . . . . . . . . . . . . 62

5.2 chapter 5 example 2   . . . . . . . . . . . . . . . . . . . . . . 635.3 chapter 5 example 3   . . . . . . . . . . . . . . . . . . . . . . 645.4 chapter 5 example 4   . . . . . . . . . . . . . . . . . . . . . . 655.5 chapter 5 example 5   . . . . . . . . . . . . . . . . . . . . . . 655.6 chapter 5 example 6   . . . . . . . . . . . . . . . . . . . . . . 665.7 chapter 5 example 7   . . . . . . . . . . . . . . . . . . . . . . 675.8 chapter 5 example 8   . . . . . . . . . . . . . . . . . . . . . . 685.9 chapter 5 example 9   . . . . . . . . . . . . . . . . . . . . . . 695.10 chapter 5 example 10   . . . . . . . . . . . . . . . . . . . . . . 705.11 chapter 5 example 11   . . . . . . . . . . . . . . . . . . . . . . 71

6.1 chapter 6 example 1   . . . . . . . . . . . . . . . . . . . . . . 726.2 chapter 6 example 2   . . . . . . . . . . . . . . . . . . . . . . 736.3 chapter 6 example 3   . . . . . . . . . . . . . . . . . . . . . . 746.4 chapter 6 example 4   . . . . . . . . . . . . . . . . . . . . . . 756.5 chapter 6 example 5   . . . . . . . . . . . . . . . . . . . . . . 776.6 chapter 6 example 6   . . . . . . . . . . . . . . . . . . . . . . 786.7 chapter 6 example 7   . . . . . . . . . . . . . . . . . . . . . . 796.8 chapter 6 example 8   . . . . . . . . . . . . . . . . . . . . . . 816.9 chapter 6 example 9   . . . . . . . . . . . . . . . . . . . . . . 826.10 chapter 6 example 10   . . . . . . . . . . . . . . . . . . . . . . 836.11 chapter 6 example 11   . . . . . . . . . . . . . . . . . . . . . . 846.12 chapter 6 example 12   . . . . . . . . . . . . . . . . . . . . . . 856.13 chapter 6 example 13   . . . . . . . . . . . . . . . . . . . . . . 87

7.1 chapter 7 example 1   . . . . . . . . . . . . . . . . . . . . . . 89

11

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 13/154

7.2 chapter 7 example 2   . . . . . . . . . . . . . . . . . . . . . . 90

7.3 chapter 7 example 3   . . . . . . . . . . . . . . . . . . . . . . 917.4 chapter 7 example 4   . . . . . . . . . . . . . . . . . . . . . . 917.5 chapter 7 example 5   . . . . . . . . . . . . . . . . . . . . . . 927.6 chapter 7 example 6   . . . . . . . . . . . . . . . . . . . . . . 937.7 chapter 7 example 7   . . . . . . . . . . . . . . . . . . . . . . 947.8 chapter 7 example 8   . . . . . . . . . . . . . . . . . . . . . . 957.9 chapter 7 example 9   . . . . . . . . . . . . . . . . . . . . . . 967.10 chapter 7 example 10   . . . . . . . . . . . . . . . . . . . . . . 977.11 chapter 7 example 11   . . . . . . . . . . . . . . . . . . . . . . 987.12 chapter 7 example 12   . . . . . . . . . . . . . . . . . . . . . . 99

8.1 chapter 8 example 1   . . . . . . . . . . . . . . . . . . . . . . 1018.2 chapter 8 example 2   . . . . . . . . . . . . . . . . . . . . . . 1028.3 chapter 8 example 3   . . . . . . . . . . . . . . . . . . . . . . 1038.4 chapter 8 example 4   . . . . . . . . . . . . . . . . . . . . . . 1048.5 chapter 8 example 5   . . . . . . . . . . . . . . . . . . . . . . 1058.6 chapter 8 example 6   . . . . . . . . . . . . . . . . . . . . . . 1068.7 chapter 8 example 7   . . . . . . . . . . . . . . . . . . . . . . 1078.8 chapter 8 example 8   . . . . . . . . . . . . . . . . . . . . . . 1088.9 chapter 8 example 9   . . . . . . . . . . . . . . . . . . . . . . 1108.10 chapter 8 example 10   . . . . . . . . . . . . . . . . . . . . . . 1118.11 chapter 8 example 11   . . . . . . . . . . . . . . . . . . . . . . 112

8.12 chapter 8 example 12   . . . . . . . . . . . . . . . . . . . . . . 113

9.1 chapter 9 example 1   . . . . . . . . . . . . . . . . . . . . . . 1169.2 chapter 9 example 2   . . . . . . . . . . . . . . . . . . . . . . 1169.3 chapter 9 example 3   . . . . . . . . . . . . . . . . . . . . . . 1179.4 chapter 9 example 4   . . . . . . . . . . . . . . . . . . . . . . 1189.5 chapter 9 example 5   . . . . . . . . . . . . . . . . . . . . . . 1199.6 chapter 9 example 6   . . . . . . . . . . . . . . . . . . . . . . 1219.7 chapter 9 example 7   . . . . . . . . . . . . . . . . . . . . . . 1239.8 chapter 9 example 8   . . . . . . . . . . . . . . . . . . . . . . 1249.9 chapter 9 example 9   . . . . . . . . . . . . . . . . . . . . . . 1259.10 chapter 9 example 10   . . . . . . . . . . . . . . . . . . . . . . 127

11.1 chapter 11 example 1   . . . . . . . . . . . . . . . . . . . . . . 12911.2 chapter 11 example 2   . . . . . . . . . . . . . . . . . . . . . . 130

12

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 14/154

Chapter 2

Introduction To Engineering

Calculations

check Appendix AP 97 for dependency:

221.sci

Scilab code Exa 2.2.1  chapter 2 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 2 2 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 2 2 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   A c c l F i n a l = A c c l I n i t i a l * ( ( 3 6 0 0 * 2 4 * 3 6 5 ) ^ 2 ) / 1 0 ^ 5 ;

7   / / t he c a l c u l a t i o n s i n v o l v ed a re t he c o n ve r si o nf a c t o r s

8   printf ( ”   \n f i n a l a c c e l e r a t i o n =%E Km/ Yr ˆ2 ” , A c c l F i n a l

)

13

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 15/154

Figure 2.1: chapter 2 example 1

check Appendix AP 96 for dependency:

231.sci

Scilab code Exa 2.3.1  chapter 2 example 2

1   clc

2   / / t h i s p ro gr am i s u se d t o c o n v e r t l b . f t / min ˆ2 t o kg .c m/sˆ2

3   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 2 3 1 . s c e ’ )

4   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 2 3 1 . s c i ’

5   exec ( f i l e n a m e )6   F i n a l = I n i t i a l * 0 . 4 5 3 5 9 3 * 1 0 0 / ( 3 . 2 8 1 * 6 0 * 6 0 )

7   // t h e c a l c u l a t i o n s i n vo l ve d a re c o n v er s io n f a c t o r s8   disp ( ” f i n a l =” )

9   disp ( F i n a l ) ;   disp ( ”k g . cm/s ˆ2” )

14

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 16/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 17/154

Figure 2.4: chapter 2 example 4

7   printf ( ” mass o f t h e w at er = vo lu me x d e n s i t y =%f lbm ”, m a s s )

8   printf ( ”   \n At s e a l e v e l , g = 32 .1 74 f t / s ˆ 2 ”)

9   g = 3 2 . 1 7 4 ;10   w e i g h t = m a s s * g / 3 2 . 1 7 4 ;

11   printf ( ”   \n w ei gh t a t s e a l e v e l = %f l b f    \n” , w e i g h t )

12   printf ( ”   \n At d en ve r , g = 32 .1 39 f t / s ˆ 2 ”)

13   g = 3 2 . 1 3 9 ;

14   w e i g h t = m a s s * g / 3 2 . 1 7 4 ;

15   printf ( ”\n w e ig h t a t d en v er= %f l b f ” , w e i g h t )

16   // t he d i v i s i o n w it h 3 2 . 17 4 i s t o c o n ve r t lbm . f t / s ˆ2t o l b f  

check Appendix AP 94 for dependency:252.sci

Scilab code Exa 2.5.2  chapter 2 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 2 5 2 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 2 5 2 . s c i ’4   exec ( f i l e n a m e )

5   // H ere We u se d s t an d ar d l i b r a r y f u n c t i o n s mean ands t d e v i a t i o n

16

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 18/154

Figure 2.5: chapter 2 example 5

6   y b a r = mean ( y ) ;7   sy = s t _ d e v i a t i o n ( y ) ;

8   d e f a u l t v a l u e = y b a r + 3 * s y + 1 ;

9   printf ( ” t h e maximum a l l o w e d v a l u e o f y i . e . badb a tc he s i n a week i s %d   \n” , d e f a ul t v a lu e )

10   disp ( ” i n c as e o f 2 s ta nd ar d d e v i a t i o n s ” ) ;

11   d e f a u l t v a l u e = y b a r + 2 * s y + 1 ;

12   printf ( ” t he l i m i t i n g v al ue o f y i . e . bad b at ch es i na week i s %d” , d e f a u l t v a l u e )

check Appendix AP 93 for dependency:

271.sci

Scilab code Exa 2.7.1  chapter 2 example 5

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 2 7 1 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 2 7 1 . s c i ’4   exec ( f i l e n a m e )

5   // t h i s program u se s l e a s t s q u a r e s f i t t o s o l v e f o rs l o p e and i n t e r c e p t .

17

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 19/154

Figure 2.6: chapter 2 example 6

6   / / h en ce t h e v a l u e d i f f e r s f ro m t e xt b o ok a b i t .7   sx = sum ( x ) ; s x 2 = sum ( x ^ 2 ) ; s y = sum ( y ) ; s x y = sum ( x . * y ) ; n =

length ( x ) ;

8   A = [ s x , n ; s x 2 , s x ] ; B = [ s y ; s x y ] ; p = A \ B ;

9   m = p ( 1 , 1 ) ; b = p ( 2 , 1 ) ;

10   c l f ( )11   xtitle (  ’ 2 . 7 1 . s c e ’ , ’ V dot ( L/mi n) ’ , ’R ’ , ’ box ed ’ )

12   plot2d ( x , y , s t y l e = 3 )

13   disp ( ” i n c a s e 2 , R=36 ”)

14   R = 3 6 ;

15   V = m * R + b ;

16   printf ( ” the n V=%f” , V ) ;

check Appendix AP 92 for dependency:

272.sci

18

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 20/154

Scilab code Exa 2.7.2  chapter 2 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 2 7 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 2 7 2 . s c i ’4   exec ( f i l e n a m e )

5   disp ( s q r t T ) ;

6   sx = sum ( s q r t T ) ; s x 2 = sum ( T ) ; s y = sum ( M ) ; s x y = sum ( s q r t T . * M )

; n = length ( T ) ;

7   A = [ s x , n ; sx 2 , s x ] ; B = [ s y ; s xy ] ; p = A \ B ;

8   a = p ( 1 , 1 ) ; b = p ( 2 , 1 ) ;

9   c l f ( )

10   xtitle ( ’ 2 . 7 . 2 . s c e ’ , ’T1/2 ’ , ’ mdot ’ , ’ box ed ’ )11   plot2d ( s q r t T , M , s t y l e = 3 ) ;

12   printf ( ” s l o p e=%f”, a ) ;

13   printf ( ”\n i n t e r c e p t =%f ”, b ) ;

19

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 21/154

Chapter 3

Processes and Process

Variables

check Appendix AP 91 for dependency:

311.sci

Scilab code Exa 3.1.1  chapter 3 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 1 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 1 1 . s c i ’4   exec ( f i l e n a m e )

5   d e n s i t y = 1 3 . 5 4 6 * 6 2 . 4 3

6   printf ( ” d e n s i t y o f m e rc u ry=%f lbm / f t ˆ 3 ” , d e n s i t y ) ;

7   / / t h e m u l t i p l i c a t i o n f a c t o r i s t o c on v e rt d e ns i t yf ro m gm/ c c t o lbm / f t ˆ 3 .

8   v o l um e = m a s s / ( . 45 4 * d e n s it y ) ;   // f t ˆ39   / / t h e d i v i s i o n by 0 . 4 54 i s t o c on ve rt mass i n kg t o

lbm .10   printf ( ”   \n The volume o f %d kg o f me rcu ry i s %f f t

ˆ3 ” , m a s s , v o l u m e )

20

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 22/154

Figure 3.1: chapter 3 example 1

check Appendix AP 90 for dependency:

312.sci

Scilab code Exa 3.1.2  chapter 3 example 2

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 1 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 1 2 . s c i ’4   exec ( f i l e n a m e )

5   disp ( ”we know t ha t V (T )=Vo[ 1+ 0 . 18 182 x 10ˆ(−3)xT

+ 0 . 0 0 7 8 x 1 0 ˆ (−6)xTxT] ” )6   V a t0 = V a t 2 0 / ( 1 + 0 .1 8 1 82 * 1 0^ ( - 3 ) * T 1 + 0 . 00 7 8 *1 0 ^ ( - 6 ) * T 1 *

T1 )

7   / / t h e f u nc t i o n i s d e f i n e d w i t h t h e v a r i a b l e a st e m p e r a t u r e

21

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 23/154

Figure 3.2: chapter 3 example 2

8   function [ v o l u m e ] = v o l u m e ( T )

9   v o lu m e = V a t0 * ( 1 +0 . 1 81 8 2 *1 0 ^ ( - 3 ) * T + 0 . 00 7 8 *1 0 ^ ( - 6 )

* T * T ) ;

10   e n d f u n c t i o n

11   printf ( ” v at 20=%f ” , v o l u m e ( T 1 ) )

12   printf ( ”   \n v at 1 00=%f ” , v o l u m e ( T 2 ) )

13   c h a n g e = ( ( v o l u m e ( T 2 ) ) - ( v o l u m e ( T 1 ) ) ) * 4 / ( % p i * D * D )

14   printf ( ”   \n c ha ng e i n t he h e ig h t o f mer cury l e v e l =%f f t ” , c h a n g e )

15   / / t h e a n sw e r i s a b i t d i f f e r e n t due t o r ou nd in g o f f  o f v ol um e ( T2 ) i n t e x t b o o k

check Appendix AP 89 for dependency:

331.sci

Scilab code Exa 3.3.1  chapter 3 example 3

22

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 24/154

Figure 3.3: chapter 3 example 3

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 3 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 3 1 . s c i ’4   exec ( f i l e n a m e )

5   m o l e s = m a s s / M

6   printf ( ”\n no . of mol e s=%f” , m o l e s )

7   l b m o l e = m o l e s / 4 5 3 . 6

8   printf ( ”\n n o . o f l b m o l e s=%f ” , l b m o l e )

9   C m o l e s = m o l e s

10   printf ( ”\n no . o f m o l es o f c a rb o n=%f ”, C m o l e s )

11   O m o l e s = 2 * m o l e s

12   printf ( ”\n n o . o f m o l e s o f o x yg e n=%f ” , O m o l e s )

13   O 2 m o l e s = m o l e s

14   printf ( ”\n no . o f m o l es o f d i o x yg e n=%f ” , O 2 m o l e s )15   g r a m s O = O m o l e s * 1 6

16   printf ( ”\n n o . o f g ra ms o f o x yg e n=%f ” , g r a m s O )

17   g r a m s O 2 = O 2 m o l e s * 3 2

18   printf ( ”\n n o . o f g ra ms o f o x yg e n=%f ” , g r a m s O 2 )

19   m o l e c u l e s C O 2 = m o l e s * 6 . 0 2 * 1 0 ^ ( 2 3 )

20   printf ( ”\n n o . o f m o l e c u l e s o f CO2 = %E” , m o l e c u l e s C O 2

)

check Appendix AP 88 for dependency:

332.sci

23

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 25/154

Figure 3.4: chapter 3 example 4

Scilab code Exa 3.3.2  chapter 3 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 3 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 3 2 . s c i ’

4   exec ( f i l e n a m e )5   m a s s A = m a s s * x A

6   printf ( ”   \n Mass o f A i n %d k g o f s o l u t i o n = %f kg A” , m a s s , m a s s A )

7   f l o w r a t e A = f l o w r a t e 1 * x A

8   printf ( ”   \n Mass f lo w r a t e o f A i n a s t r e a m f l ow i n gat %d l bm/h =%f l bm A/h” , f l o w r at e 1 , f l o w r a t e A )

9   f l o w r a t e B = f l o w r a t e 2 * y B

10   printf ( ”   \n Molar f l o w r a t e o f B i n a s t r e a m f l ow i n gat %d mol /mi n = %f mol B/mi n” ,flowrate2 ,flowrateB)

11   T o t a l f l o w r a t e = m o l a r B / y B12   printf ( ”   \n T o ta l f lo w r a t e o f a s o l u t i o n w i t h %dkmolB/s=%f”, m o l a r B , T o t a l f l o w r a t e )

13   M a s s S o l u t i o n = m a s s o f A / x A

14   printf ( ”   \n Mass o f s o l u t i o n t ha t c o n t a i n s %d lbm o f  A = % f ” ,massofA ,MassSolution)

check Appendix AP 87 for dependency:

333.sci

Scilab code Exa 3.3.3  chapter 3 example 5

24

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 26/154

Figure 3.5: chapter 3 example 5

Figure 3.6: chapter 3 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 3 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 3 3 . s c i ’4   exec ( f i l e n a m e )

5   m o l O 2 = m a s s O 2 / M O 2

6   m o l C O = m a s s C O / M C O

7   m o l C O 2 = m a s s C O 2 / M C O 2

8   m o l N 2 = m a s s N 2 / M N 2

9   T o t a l M o l = m o l O 2 + m o l C O + m o l C O 2 + m o l N 2

10   printf ( ”   \n m o l e f r a c t i o n o f O2=%f ”, m o l O 2 / T o t a l M o l )

11   printf ( ”   \n m o l e f r a c t i o n o f CO=%f ”, m o l C O / T o t a l M o l )

12   printf ( ”   \n m o l e f r a c t i o n o f CO2=%f ” , m o l C O 2 / T o t a l M o l )

13   printf ( ”   \n m o l e f r a c t i o n o f N2=%f ”, m o l N 2 / T o t a l M o l )

check Appendix AP 86 for dependency:

334.sci

25

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 27/154

Figure 3.7: chapter 3 example 7

Scilab code Exa 3.3.4  chapter 3 example 6

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 3 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 3 4 . s c i ’4   exec ( f i l e n a m e )

5   M b a r = y N 2 * M N 2 + ( 1 - y N 2 ) * M O 2

6   printf ( ”   \n a v e ra ge m o le cu l ar w ei gh t o f a i r fromm o l ar c o m p o s i t i o n =%f ” , M b a r )

7   I n v M b ar = x N 2 / 2 8 + ( 1 - x N2 ) / 3 2

8   printf ( ”   \n a v e ra ge m o le cu l ar w ei gh t o f a i r fromm as s c o m p o s i t i o n =%f ” , 1 / I n v M b a r )

check Appendix AP 85 for dependency:

335.sci

Scilab code Exa 3.3.5  chapter 3 example 7

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 3 5 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 3 5 . s c i ’4   exec ( f i l e n a m e )

5   m a s s _ c o n c = c o n c * 9 8

26

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 28/154

Figure 3.8: chapter 3 example 8

6   printf ( ” mass c o n c e n t r a t i o n o f s u l f u r i c a c i d=%f kg /mˆ3 ” , m a s s _ c o n c )

7   m a s s _ f l o w r a t e = r a t e * m a s s _ c o n c / 6 0

8   printf ( ”   \n Mass f l o w r a t e o f s u l f u r i c a c id=%f kg / s ”, m a s s _ f l o w r a t e )

9   m a s s f r a c t i o n = 1 / ( r a t e * D * 1 0 0 0 / 6 0 )

10   printf ( ”   \n Mass f r a c t i o n o f s u l f u r i c a c id=%f” ,

 ma s sf r a ct i on )

check Appendix AP 84 for dependency:

341.sci

Scilab code Exa 3.4.1 chapter 3 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 4 1 . s c i ’4   exec ( f i l e n a m e )

5   P r e s s u r e = P r e s s u r e * 1 0 0 0 / ( 1 3 6 0 0 * 9 . 8 0 7 )

6   printf ( ” Pr es su re =%E mm of Hg” , P r e s s u r e )

check Appendix AP 83 for dependency:

342.sci

27

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 29/154

Figure 3.9: chapter 3 example 9

Figure 3.10: chapter 3 example 10

Scilab code Exa 3.4.2  chapter 3 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 4 2 . s c i ’4   exec ( f i l e n a m e )

5   P h = P 0 + D * g * h

6   printf ( ” P r e s s u r e a t t h e b ot to m o f t h e l a k e =%E N/mˆ 2 ”, P h )

check Appendix AP 82 for dependency:352.sci

Scilab code Exa 3.5.2  chapter 3 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 3 5 2 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 3 5 2 . s c i ’4   exec ( f i l e n a m e )

5   // I n t h i s c o d e I u s e d a f u nc t i o n t o a c h i e v e t h ec o n v e r s i o n

28

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 30/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 31/154

Chapter 4

Fundamentals Of Material

Balances

check Appendix AP 81 for dependency:

421.sci

Scilab code Exa 4.2.1  chapter 4 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 2 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 2 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

Figure 4.1: chapter 4 example 1

30

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 32/154

Figure 4.2: chapter 4 example 2

6   a c c u m u la t i o n =   input + g e n e r a t i on - o u t pu t - c o n s u m p t i o n

7   disp ( ” We know t h a t a c c u m u l a t i o n =i n p u t +g e n e r a t i o n −out put−c o n s u m p t i o n ” )

8   printf ( ” Hence , Each y e a r p o p u l a t i o n d e c r e a s e s by %dp e o p l e ” , - a c c u m u l a t i o n )

check Appendix AP 80 for dependency:

422.sci

Scilab code Exa 4.2.2  chapter 4 example 2

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 2 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 2 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

31

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 33/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 34/154

Figure 4.4: chapter 4 example 4

8   x = ( m 1 * x1 + m 2 * x2 ) / m9   printf ( ”   \n The c o mp o s it i on o f t he m et ha no l i n t he

p ro du ct i s %f a nd w a te r i s %f ” , x , 1 - x )

check Appendix AP 78 for dependency:

424.sci

Scilab code Exa 4.2.4  chapter 4 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 2 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 2 4 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   n d o t = r a t e / ( 1 - x 1 )7   d el t aN = - v ol * d * 10 ^3 / M

8   t f = de l ta N / ( - 0. 1 * n do t )

9   printf ( ”   \n The t im e R eq ui re d f o r t he T ot al p r o c e s s=%d min” , t f )

33

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 35/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 36/154

Figure 4.6: chapter 4 example 6

9   n 3 = n 2 / x

10   printf ( ”n3=%f mol/ min” , n 3 )

11   disp ( ” U s in g t o t a l m ol e b a la n ce , ” )

12   n 1 = ( n 3 - n 2 ) / ( 1 + x 1 )

13   printf ( ”n1=%f mol/ min” , n 1 )

14   disp ( ” U s i n g N2 b a l a n c e , ” )

15   y = 1 - x - 0 . 7 9 * n 1 / n 3

16   printf ( ”y=%f mol O2/mol ” ,y )

check Appendix AP 76 for dependency:

432.sci

Scilab code Exa 4.3.2  chapter 4 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 3 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 3 2 . s c i ’4   exec ( f i l e n a m e )

35

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 37/154

Figure 4.7: chapter 4 example 7

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   m u l t i p l y = F i n a l B a s i s / b a s i s

7   F e e d = 1 0 0 * m u l t i p l y

8   T o p S t r e a m = 5 0 * m u l t i p l y

9   B o t t o m S t r e a m 1 = 1 2 . 5 * m u l t i p l y10   B o t t o m S t r e a m 2 = 3 7 . 5 * m u l t i p l y

11   printf ( ”   \n F i n a l B a s i s =%d l b−m o le s / h” , F e e d )

12   printf ( ”   \n F i n a l Top S t re a m F ee d=%d l b−m o le s / h” ,

T o p S t r e a m )

13   printf ( ”   \n F i n a l B ott om S tr ea m F ee d 1 =%d l b−m o l e sA/h” , B o t t o m S t r e a m 1 )

14   printf ( ”   \n F i n a l B ott om S tr ea m F ee d 2 =%d l b−m o l e sB/h” , B o t t o m S t r e a m 2 )

check Appendix AP 75 for dependency:

433.sci

36

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 38/154

Scilab code Exa 4.3.3  chapter 4 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 3 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 3 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )6   disp ( ” U s i n g NaOH b a l a n c e ” )

7   m 2 = i n p u t x * b a s i s / o u t p u t x

8   printf ( ”m2=%f Kg NaOH” , m 2 )

9   disp ( ” U s in g T o ta l mass b a l a n c e ” )

10   m 1 = m 2 - b a s i s

11   printf ( ”m1=%f Kg Water ” , m 1 )

12   V 1 = m 1 / D

13   printf ( ”   \n V1=%f L i t r e s ” , V 1 )

14   R a t i o 1 = V 1 / b a s i s

15   R a t i o 2 = m 2 / b a s i s

16   printf ( ”   \n R at io o f l t w at er /Kg F eed = %f l t w at er /Kg F e ed” , R a t i o 1 )

17   printf ( ”   \n R a t io o f Kg p r o d u ct / Kg Fe ed = %f Kgp r o d u c t / Kg F ee d ” , R a t i o 2 )

check Appendix AP 74 for dependency:

435.sci

Scilab code Exa 4.3.5  chapter 4 example 8

37

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 39/154

Figure 4.8: chapter 4 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 3 5 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 3 5 . s c i ’

4   exec ( f i l e n a m e )5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   m a s s 1 = o u t p u t B a s i s * M 1 * o u t p u t x

7   m a s s 2 = o u t p u t B a s i s * M 2 * ( 1 - o u t p u t x )

8   m a s s = m a s s 1 + m a s s 2

9   y B 2 = m a s s 1 / m a s s

10   m 1 = b a s i s * D

11   printf ( ”   \n m1=%f Kg/h” , m 1 )

12   m B 3 = z * i n p u t x * m 113   printf ( ”   \n mB3=%f Kg/h ” , m B 3 )

14   disp ( ” U s i n g B e nz en e b a l a n c e , ” )

15   m 2 = ( i n p u t x * m 1 - m B 3 ) / y B 2

16   printf ( ”   \n m2=%f Kg/h” , m 2 )

38

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 40/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 41/154

Figure 4.9: chapter 4 example 9

40

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 42/154

Figure 4.10: chapter 4 example 10

16   x 1 = ( i n p u t M a s s 1 * i n p ut x 1 - o u t p u t M a s s 1 * o u t p u t x 1 ) / m 1

17   printf ( ”x1=%f Kg A/ kg” , x 1 )

18   disp ( ” u s i n g Mass b a la n ce on m ix in g p oi nt , ” )

19   m 2 = i n p u t M a s s 2 + m 1

20   printf ( ”m2=%d Kg/ h” , m 2 )

21   disp ( ” u s i n g A b a l an c e on m ix in g p oi nt , ” )

22   x 2 = ( i n p u t M a s s 2 * i n p u t x 2 + m 1 * x 1 ) / m 2

23   printf ( ”x2=%f Kg A/ kg” , x 2 )

check Appendix AP 72 for dependency:

442.sci

41

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 43/154

Scilab code Exa 4.4.2  chapter 4 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 4 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )6   disp ( ” U s i ng B a l a n c e s a ro u nd two−e x t r a x t o r s ys te m , ” )

7   disp ( ” B a l an c e on t o t a l mass , ” )

8   printf ( ”%d + %d + %d = %f + m1+m3” , m a s s i n , M 1 , M 2 ,

 ma sso ut )

9   disp ( ” B a l a n c e on A” )

10   printf ( ”%d   ∗   % f = % f    ∗   %f + m1 %f + m3 %f ” , m a s s i n ,

inputx ,massout ,outputxA ,m1xA ,m3xA )

11   A = [ 1 1 ; m 1x A , m 3 x A ]

12   b = [ m a s s i n + M 1 + M2 - m a s so u t ; m a s si n * i n p u tx - m a s so u t *

o u t p u t x A ]

13   C = A \ b

14   m 1 = C ( 1 , 1 )

15   m 3 = C ( 2 , 1 )

16   printf ( ”   \n m1=%f Kg” , m 1 )

17   printf ( ”   \n m3=%f Kg” , m 3 )

18   disp ( ” B a l a n c e o n M” )

19   x M 1 = ( m a s s i n + M 2 - m a s s o u t * o u t p u tx M - m 3 * m 3 x M ) / m 1

20   printf ( ”xM1=%f kg MIBK/ kg ” , x M 1 )

21   disp ( ” B a l a n c es a ro un d E x t ra c t m ix in g p o in t , ” )

22   disp ( ” B a l a n c e on A” )

23   m A 4 = m 1 * m 1 x A + m 3 * m 3 x A24   printf ( ”   \n mA4=%f Kg Ace ton e ” , m A 4 )

25   disp ( ” B a l a n c e o n M” )

26   m M 4 = m 1 * x M 1 + m 3 * m 3 x M

27   printf ( ”   \n mM4=%f Kg MIBK” , m M 4 )

42

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 44/154

28   disp ( ” B a l a n c e o n W” )

29   m W 4 = m 1 *( m 1 xM - x M 1 ) + m 3 * m 3x W30   printf ( ”   \n mW4=%f Kg Wate r ” , m W 4 )

31   disp ( ” B a l a nc es a ro un d t he F i r s t e x t r a c t o r ” )

32   disp ( ” B a la nc e on A” )

33   m A 2 = m a s s i n * i n p u t x - m 1 * m 1 x A

34   printf ( ”   \n mA2=%f Kg Ace ton e ” , m A 2 )

35   disp ( ” B a l an c e on M” )

36   m M 2 = m a s s i n - x 1 * x M 1

37   printf ( ”   \n xM1=%f Kg MIBK” , x M 1 )

38   disp ( ” B a l an c e o n W” )

39   m W2 = m a s s i n * i np ut x - m 1 * ( m1 xM - x M 1 )

40   printf ( ”   \n mW2=%f Kg Wate r ” , m W 2 )

check Appendix AP 71 for dependency:

451.sci

Scilab code Exa 4.5.1 chapter 4 example 11

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 5 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 5 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” O v e r a l l d ry A ir b a la n ce , ” )

7   n 1 = x 3 * b a s i s / x 1

8   printf ( ” n 1=%f m ol F r e s h f e e d ” , n 1 )9   disp ( ” O v e r a l l m ol e b a l a n ce , ” )

10   n 3 = n 1 - b a s i s

11   printf ( ” n 3=%f m ol W at er c o n d e n s e d ” , n 3 )

12   disp ( ” Mo le b a l a n c e on m i xi n g p o i n t , ” )

43

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 45/154

Figure 4.11: chapter 4 example 11

13   disp ( ”n1+n5=n2” )

14   disp ( ” Water b a l a n c e on m i xi n g p o i n t ” )

15   printf ( ” % f n 1 + % f n 5 = % f n 2 ” , 1 - x 1 , 1 - x 3 , 1 - x 2 )

16   A = [ 1 - 1; 1 - x2 , - (1 - x 3 ) ]17   b = [ n 1 ; ( 1 - x 1 ) * n 1 ]

18   C = A \ b

19   n 2 = C ( 1 , 1 )

20   n 5 = C ( 2 , 1 )

21   printf ( ”   \n n2=%f mol” , n 2 )

22   printf ( ”   \n n 5=%f m ol R e c y c l e d ” , n 5 )

check Appendix AP 70 for dependency:

452.sci

44

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 46/154

Figure 4.12: chapter 4 example 12

45

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 47/154

Scilab code Exa 4.5.2  chapter 4 example 12

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 5 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 5 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   m 6 x = m 5 x

7   printf ( ” Give n , m4=%f (m4+m5) ” ,x )

8   disp ( ” u s i n g O v e r a l l K2CrO4 b a l a n ce , ” )

9   printf ( ”%f    ∗   %f = m4+ %f m5” , f e e d x , f e e d , m 6 x )10   A = [ 1 - x , - x ; 1 , m 6 x ]

11   b = [ 0 ; f e e d x * f e e d ]

12   C = A \ b

13   m 4 = C ( 1 , 1 )

14   m 5 = C ( 2 , 1 )

15   printf ( ”   \n m4=%f K2CrO4 c r y s t a l s /h” , m 4 )

16   printf ( ”   \n m5=%f e n t r a i n e d s o l u t i o n / h” , m 5 )

17   disp ( ” O v e ra l l T ot al mass b a l an c e , ” )

18   m 2 = f e e d - m 4 - m 5

19   printf (”m2=%f Kg H2O ev ap or at ed /h”

, m 2 )

20   disp ( ” Mass b a l an c e a ro un d t he c r y s t a l l i z e r , ” )

21   disp ( ”m3=m4+m5+m6”)

22   disp ( ” Water b al a nc e a round t he c r y s t a l l i z e r , ” )

23   printf ( ” %f m3= %f m5 + %f m6” , 1 - m 3 x , 1 - m 5 x , 1 - m 6 x )

24   D = [ 1 - 1; 1 ( - 1 + m 6x ) / ( 1 - m 3 x ) ]

25   e = [ m 4 + m 5 ; ( 1 - m 5 x ) * m 5 / ( 1 - m 3 x ) ]

26   F = D \ e

27   m 3 = F ( 1 , 1 )

28   m 6 = F ( 2 , 1 )

29   printf ( ”   \n m3=%f Kg/h fe d to th e c r y s t a l l i z e r ” , m 3 )

30   printf ( ”   \n m6=%f Kg/h ” , m 6 )31   r a t i o = m 6 / f e e d

32   printf ( ”   \n r a t i o =%f Kg r e c y c l e / Kg f r e s h f e e d ” ,

r a t i o )

46

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 48/154

Figure 4.13: chapter 4 example 13

33   disp ( ” m as s b a l a n c e a ro un d R e cy c le−f r e s h f e ed mi xi ngp oi nt , ” )

34   m 1 = f e e d + m 6

35   printf ( ”m1=%f kg / h f e e d t o t h e e v a p o r a t o r ” , m 1 )

36   disp ( ” With o ut r e c y c l e , ” )

37   disp ( ”m3=622 Kg/h” )

38   disp ( ”m5=2380 Kg/h” )

check Appendix AP 69 for dependency:

461.sci

Scilab code Exa 4.6.1  chapter 4 example 13

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 6 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 6 1 . s c i ’4   exec ( f i l e n a m e )

47

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 49/154

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   n P = b a s i s * x P

7   n N = b a s i s * x N

8   n O 2 = b a s i s * x A * 0 . 2 1

9   if ( n N / n P > 1 )

10   disp ( ”NH3 i s i n e x c e s s ” )

11   else

12   disp ( ” Pr ope ne i s i n e x c e s s ” )

13   end

14   if ( n O 2 / n P > 1 )

15   disp ( ”O2 i s i n e x c es s ” )16   else

17   disp ( ” p ro pe ne i s i n e x c e s s ” )

18   end

19   n O 2 r e a c t e d = n P * 1 . 5

20   n N r e a c t e d = n P * 1

21   E x c e s s A m m o n i a = ( n N - n N r e a c t e d ) * 1 0 0 / n N r e a c t e d

22   E x c e s s O 2 = ( n O 2 - n O 2 r e a c t e d ) * 1 0 0 / n O 2 r e a c t e d

23   printf ( ”   \n p e r c e n t a g e e x c e s s Ammonia=%f ” ,

E x c e s s A m m o n i a )

24   printf (”   \n p e r c e n t a g e e x c e s s Oxyg en=%f ”

, E x c e s s O 2 )

25   n P o u t = ( 1 - x ) * n P

26   printf ( ”   \n no . o f m o le s o f P r o p yl e n e l e f t = %d mol ” ,

n P o u t )

27   E = n P - n P o u t

28   n N o u t = n N - E

29   nO2out= nO2 -1.5*E

30   n A c = E

31   n W = 3 * E

32   printf ( ”   \n n o . o f m o l e s o f Ammonia l e f t = %f m ol ” ,

n N o u t )

33   printf ( ”   \n no . o f m o le s o f o xy ge n l e f t = %f mol ” ,n O 2 o u t )

34   printf ( ”   \n n o . o f m o l e s o f ACN f o r m e d= %d m ol ” , n A c )

35   printf ( ”   \n no . o f m o le s o f w a te r f or me d= %d mol ” , n W )

48

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 50/154

Figure 4.14: chapter 4 example 14

check Appendix AP 68 for dependency:

463.sci

Scilab code Exa 4.6.3  chapter 4 example 14

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 6 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 6 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   n 1 = ( 1 - c o n v 1 ) * b a s i s * x

7   n 2 = c o n v 2 * b a s i s * x8   E 1 = n 2

9   E 2 = b a si s * x - E1 - n 1

10   n 3 = E 1 - E 2

11   n 4 = 2 * E 2

49

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 51/154

Figure 4.15: chapter 4 example 15

12   n 5 = b a s i s * ( 1 - x )

13   n t = n 1 + n 2 + n 3 + n 4 + n 5

14   s e l e c t i v i t y = n 2 / n 415   printf ( ” s e l e c t i v i t y=%f mol Ethe ne /mol methane ” ,

s e l e c t i v i t y )

check Appendix AP 67 for dependency:

472.sci

Scilab code Exa 4.7.2  chapter 4 example 15

1   clc

50

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 52/154

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 7 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 7 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” O v e r a l l P ro pa ne c o n v e rs i o n , ” )

7   n 6 = ( 1 - E ) * b a s i s

8   printf ( ”n6=%d mol prop ane ” , n 6 )

9   disp ( ” O v e r a l l C b a la n ce , ” )

10   n 7 = b as is - n6

11   printf ( ”n7=%d mol pr op e ne ” , n 7 )

12   disp ( ” O v e ra l l H b a l an c e , ” )13   n 8 = ( b a s i s * 8 - n 6 * 8 - n 7 * 6 ) / 2

14   printf ( ” n8=%d mol H2” , n 8 )

15   P e r c e n t a g e P r o p a n e = n 6 * 1 0 0 / ( n 6 + n 7 + n 8 )

16   printf ( ”\n Mo le p e r c e n t a g e o f p r op a ne=%f ”,

P e r c e n t a g e P r o p a n e )

17   P e r c e n t a g e P r o p e n e = ( 1 0 0 - P e r c e n t a g e P r o p a n e ) / 2

18   printf ( ”\n M ole p e r c e n t a g e o f p r o pe n e=m ol ep e r c e n t a g e o f h y d ro g e n=%f ” , P e r c e n t a g e P r o p e n e )

19   disp ( ” U si ng g i v en r e l a t i o n s among s e p a r a t o r

v a r i a b l e s , ”)

20   n 3 = n 6 / 0 . 0 0 5 5 5

21   n 1 0 = 0 . 0 5 * n 7

22   printf ( ”   \n n3=%d mol Propane ” , n 3 )

23   printf ( ”   \n n 10=%f m ol P r o p en e ” , n 1 0 )

24   disp ( ” u s i n g Pro pa ne b a l an c e a bo ut s e p a r a a t i o n u n i t ” )

25   n 9 = n 3 - n 6

26   printf ( ”n9=%d mol Propane ” , n 9 )

27   n 1 = b a s i s + n 9

28   disp ( ” U s i ng P ro pa ne b a l a n c e a b ou t m i xi n g p o i n t , ” )

29   printf ( ” n1=%d mol H2” , n 1 )

30   R e c y c l e R a t i o = ( n 9 + n 1 0 ) / b a s i s31   printf ( ”   \n r e c y c l e r a t i o =%d m ol r e c y c l e / mol f r e s h

f e e d ” , R e c y c l e R a t i o )

32   S i n g l e P a s s = ( n 1 - n 3 ) * 1 0 0 / n 1

33   printf ( ”   \n s i n g l e −p a s s c o n v e r s i o n =%f ” , S i n g l e P a s s )

51

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 53/154

Figure 4.16: chapter 4 example 16

check Appendix AP 66 for dependency:

473.sci

Scilab code Exa 4.7.3  chapter 4 example 16

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 7 3 . s c e ’ )

52

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 54/154

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 7 3 . s c i ’

4   exec ( f i l e n a m e )5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” R ea ct or a n a l y s i s , ” )

7   n 2 = ( 1 - s i n g l e _ p a s s ) * b a s i s * i n p u t x H 2

8   printf ( ” n2=%d mol H2” , n 2 )

9   disp ( ”H2 b a l a n c e ” )

10   consH2= basis* inputxH2 -n2

11   printf ( ”H2 mol es consumed=%d mol H2” , c o n s H 2 )

12   disp ( ”CO2 b a l a n c e ” )

13   n 1 = b a s i s * i n p u t x C O 2 - c o n s H 2 / 314   printf ( ” n1=%d mol CO2” , n 1 )

15   disp ( ” M et ha no l b a l a n c e ” )

16   n 3 = c o n s H 2 / 3

17   printf ( ”n3=%d mol Methanol ” , n 3 )

18   disp ( ”H2O b a l a n c e ” )

19   n 4 = c o n s H 2 / 3

20   printf ( ” n4=%d mol H2O” , n 4 )

21   disp ( ” c o n d en s er a n a l y s i s ” )

22   disp ( ” T o ta l mol e b a la n ce ” )

23   n 5 = n 1 + n 2 + m o l I

24   printf ( ” n5=%d mol ” , n 5 )

25   disp ( ”CO2 b a l a n c e ” )

26   x 5 C = n 1 / n 5

27   printf ( ”x5C=%d mol CO2/ mol ” , x 5 C )

28   disp ( ”H2 b a l a n c e ” )

29   x 5 H = n 2 / n 5

30   printf ( ”x5H=%d mol CO2/ mol ” , x 5 H )

31   x 1 = 1 - x 5 C - x 5 H

32   printf ( ”x1=%d mol I /mol” , x 1 )

33   disp ( ” F r e s h F ee d−R e cy cl e m ix in g p o i nt a n a l y s i s ” )

34   disp ( ” T o ta l mol e b a la n ce ” )35   printf ( ”n0+nr=%d” , b a s i s )

36   disp ( ” I b al a nc e ” )

37   printf ( ” n 0 %f + n r %f = %d” , I x , x 1 , m o l I )

38   A = [1 1 ; Ix x 1]

53

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 55/154

Figure 4.17: chapter 4 example 17

39   b = [ b a s i s ; m o l I ]

40   C = A \ b   // H ere We s o l v e two l i n e a r e q u a ti o n ss i m u l t a n e o u s l y

41   n 0 = C ( 1 , 1 )

42   n r = C ( 2 , 1 )

43   printf ( ”   \n n0=%f mol f r e s h f e e d ” , n 0 )

44   printf ( ”   \n n r= %f mol r e c y c l e ” , n r )45   x 0 C = ( b a s i s * i n p u t x C O 2 - n r * x 5 C ) / n 0

46   printf ( ”   \n x0C=%f mol CO2/mol ” , x 0 C )

47   x 0 H = 1 - x 0 C - I x

48   printf ( ”   \n x0h=%f mol H2/mol” , x 0 H )

49   disp ( ” R e c y c l e−P urge s p l i t t i n g A n al y si s ” )

50   disp ( ” T o ta l mol e b a la n ce ” )

51   n p = n 5 - n r

52   printf ( ”np=%f mol pur ge ” , n p )

53   disp ( ” Flow c h a rt s c a l i n g ” )

54   F a c t o r = f i n a l / n 3

55   printf ( ” F a c t o r f o r s c a l i n g =%f Kmol /h / mo l” , F a c t o r )

check Appendix AP 65 for dependency:

481.sci

Scilab code Exa 4.8.1  chapter 4 example 17

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 8 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 8 1 . s c i ’

54

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 56/154

Figure 4.18: chapter 4 example 18

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” p a rt 1 ”)

7   w e t = x N 2 w e t + x C O 2 w e t + x O 2 w e t

8   x N 2 d r y = x N 2 w e t / w e t

9   x C O 2 d r y = x C O 2 w e t / w e t10   x O 2 d r y = x O 2 w e t / w e t

11   printf ( ”   \n xN2 d ry = % f mo l N2 /mo l d ry g a s ” , x N 2 d r y )

12   printf ( ”   \n xO2 d ry = %f mol O2/ mo l d ry g a s ” , x O 2 d r y )

13   printf ( ”   \n xCO2 d r y = % f m ol CO2/ m ol d r y g a s ” ,

x C O 2 d r y )

check Appendix AP 64 for dependency:

482.sci

Scilab code Exa 4.8.2  chapter 4 example 18

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 8 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 8 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   n O 2 T h e o r e t i c a l = b a s i s B u t a n e * 6 . 5

7   n A i r T h e o r e t i c a l = n O 2 T h e o r e t i c a l * 4 . 7 6

55

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 57/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 58/154

7   n O 2 t h e o r e t i c a l = b a s i s * 3 . 5

8   n 0 = n O 2 t h e o r e t i c a l * ( 1 + e x c e s s ) / 0 . 2 19   printf ( ” n 0=%d mo l a i r f e d ” , n 0 )

10   disp ( ” 9 0% e t h a n e c o n v e r s i o n ” )

11   n 1 = ( 1 - E 1 ) * b a s i s

12   printf ( ”No . o f m ol es o f e t ha n e u n r e ac t e d= %d” , n 1 )

13   disp ( ” 2 5% c o n v e r s i o n t o CO” )

14   n 4 = E 2 * ( b a s i s - n 1 ) * 2

15   printf ( ” n4= %d mol CO” , n 4 )

16   disp ( ” n i t r o g e n b a l an c e ” )

17   n 3 = 0 . 7 9 * n 0

18   printf ( ”n3= %d mol N2” , n 3 )

19   disp ( ” A to mi c c a rb o n b a l a n c e ” )20   n5=2* basis -2*n1- n4

21   printf ( ” n5= %d mol CO2” , n 5 )

22   disp ( ” A to mi c h y dr o ge n b a l a n c e ” )

23   n 6 = ( b a s i s * 6 - n 1 * 6 ) / 2

24   printf ( ” n6= %d mol H2O”, n 6 )

25   disp ( ” A to mi c o xy ge n b a l a n c e ” )

26   n 2 = ( n O 2 t h e o r e t i c a l * 1 . 5 * 2 - n 4 - n 5 * 2 - n 6 ) / 2

27   printf ( ”n2= %d mol O2” , n 2 )

28   d r y = n 1 + n 2 + n 3 + n 4 + n 5

29   w e t = d r y + n 6

30   y 1 = n 1 / d r y

31   printf ( ”\n y 1= %f mol C2H6/mol ” , y 1 )

32   y 2 = n 2 / d r y

33   printf ( ”\n y 2= % f m ol O2 / mo l ” , y 2 )

34   y 3 = n 3 / d r y

35   printf ( ”\n y 3= % f m ol N2 / mo l ” , y 3 )

36   y 4 = n 4 / d r y

37   printf ( ”\n y 4= %f mol CO/mol ” , y 4 )

38   y 5 = n 5 / d r y

39   printf ( ”\n y 5= %f mol CO2/mol ” , y 5 )

40   r a t i o = n 6 / d r y41   printf ( ”   \n r a t i o =%f mol H2O/ mol d ry s t a c k g a s ” ,

r a t i o )

check Appendix AP 62 for dependency:

57

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 59/154

Figure 4.20: chapter 4 example 20

484.sci

Scilab code Exa 4.8.4  chapter 4 example 20

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 8 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 8 4 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ”N2 b a l a n c e ” )

7   n a = b a s i s * x N 2 / 0 . 7 9

8   printf ( ”na=%f mol a i r ” , n a )

9   disp ( ” A t o m i c C b a l a n c e ” )10   n c = b a s is * x C O + b a si s * x C O 2

11   printf ( ”nc=%f mol C” , n c )

12   disp ( ” A t o m i c O b a l a n c e ” )

13   n w = 0. 21 * n a *2 - b a si s * ( xC O + x CO 2 * 2 + x O2 * 2 )

58

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 60/154

14   printf ( ”nw=%f mol oxygen ” , n w )

15   disp ( ” A to mi c H2 b a l a n c e ” )16   n h = n w * 2

17   printf ( ”nh=%f mol H2” , n h )

18   r a t i o = n h / n c

19   printf ( ”\n C/H r a t i o i n f u e l =%f mol H/ mol C” , r a t i o )

20   disp ( ” p e r ce n t e x c e s s a i r ” )

21   n O 2 t h e or e t i c al = n c + n h / 4

22   printf ( ” nO2 t h e o r e t i c a l =%f mol O2” , n O 2 t h e o r e t i c a l )

23   n O 2 f e d = 0 . 2 1 * n a

24   printf ( ”   \n nO2fed=%f mol O2” , n O 2 f e d )

25   p e r c e n t = ( n O 2 f e d - n O 2 t h e o r e t i c a l ) * 1 0 0 / n O 2 t h e o r e t i c a l

26   printf ( ”\n p e rc e nt a ge e x c e s s a i r =%f e x c es s a i r ” ,p e r c e n t )

check Appendix AP 61 for dependency:

491.sci

Scilab code Exa 4.9.1  chapter 4 example 21

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 4 9 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 4 9 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” D e s i g n ” )

7   M E K i n 1 = f e e d * x8   M E K ou t 1 = T o p F l ow 1 * o u t p u t x1 + B o t t om F l o w1

9   c l o s u r e 1 = M E K o u t 1 * 1 0 0 / M E K i n 1

10   printf ( ” c l o s u r e 1 =%d p e r c e n t ” , c l o s u r e 1 )

11   disp ( ” E x p e r i m e n t ” )

59

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 61/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 62/154

12   M E K i n 2 = f e e d * x

13   M E K ou t 2 = T o p F l ow 2 * o u t p u t x2 + B o t t om F l o w214   c l o s u r e 2 = M E K o u t 2 * 1 0 0 / M E K i n 2

15   printf ( ” c l o s u r e 2 =%d p e r c e n t ” , c l o s u r e 2 )

61

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 63/154

Chapter 5

Single Phase Systems

check Appendix AP 60 for dependency:

511.sci

Scilab code Exa 5.1.1  chapter 5 example 1

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 1 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 1 1 . s c i ’4   exec ( f i l e n a m e )

5   i n v Pb a r = w t p e rc t / D w a t er + ( 1 - w t p er c t ) / D s u l fu r i c

6   printf ( ” D e n si t y c a l c u l a t e d u s i ng volume a d d i t v i t y =%f  ” , 1 / i n v P b a r )

7   P b ar = w t p e r c t * D w a te r + ( 1 - w t p er c t ) * D s u l fu r i c

8   printf ( ”   \n D en si ty c a l c u l a t e d u si ng mass a d d i t i v i t y=%f” , P b a r )

Figure 5.1: chapter 5 example 1

62

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 64/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 65/154

Figure 5.3: chapter 5 example 3

Scilab code Exa 5.2.2  chapter 5 example 3

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 2 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 2 2 . s c i ’4   exec ( f i l e n a m e )

5   n d o t = V d o t / M   //k mol /h6   v d o t = n d o t * 2 2 . 4 * T / ( 2 7 3 * P )

7   printf ( ” The v o l u m et r i c f l o w r a t e o f t he s tr ea m=%f mˆ3/h” , v d o t )

check Appendix AP 57 for dependency:523.sci

Scilab code Exa 5.2.3  chapter 5 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 2 3 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 2 3 . s c i ’4   exec ( f i l e n a m e )

5   V 2 = V 1 * P 1 * T 2 / ( P 2 * T 1 )

6   printf ( ” Volume i n f i n a l s t a t e =%f f t ̂ 3 ”, V 2 )

64

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 66/154

Figure 5.4: chapter 5 example 4

Figure 5.5: chapter 5 example 5

check Appendix AP 56 for dependency:

524.sci

Scilab code Exa 5.2.4  chapter 5 example 5

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 2 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 2 4 . s c i ’

4   exec ( f i l e n a m e )5   //SCFH means f t ˆ3 (STP) /h6   n d o t = 3 . 9 5 * 1 0 ^ 5 / 3 5 9

7   printf ( ” M ol ar f l o w r a t e =%E l b−m o l e s / h r ” , n d o t )

8   V 2 d o t = V 1 d o t * T 2 * P 1 / ( T 1 * P 2 )

65

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 67/154

Figure 5.6: chapter 5 example 6

9   printf ( ”   \n T ru e v o l u m e t r i c f l o w r a t e =%E f t ˆ 3/ h ”,

V 2 d o t )

check Appendix AP 55 for dependency:

525.sci

Scilab code Exa 5.2.5  chapter 5 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 2 5 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 2 5 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )6   n 2 c a p = f l o w i n A * D a c e t o n e / M a c e t o n e

7   printf ( ”   \n M ol ar f l o w r a t e o f A ce to n e=%f m ol A ce to n e/min” , n 2 c a p )

8   P = P f i na l * 7 60 + 7 63

66

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 68/154

Figure 5.7: chapter 5 example 7

9   y 4 = P a c e t o n e / P

10   printf ( ”   \n Mole f r a c t i o n o f A c e t o ne i n t he f i n a lf l o w = %f m ol A c et o n e / m ol ” , y 4 )

11   printf ( ”   \n Mole f r a c t i o n o f N it ro ge n i n t h e f i n a lf l o w= %f mol N i t r o g e n / m ol ” ,1-y4)

12   n 3 c a p = f l o w i n N / 0 . 0 2 2 413   n 4 c a p = n 2 c a p / y 4

14   disp ( ”By u s i n g O v e r a l l Mo la r b a la n ce , ” )

15   n 1 c a p = n 4 c a p - n 2 c a p - n 3 c a p

16   V 1 c a p = n 1 c a p * 0 . 0 2 2 4 * T 1 * 7 6 0 / ( 1 * 2 7 3 * P 1 )

17   printf ( ” V o l u m et r ic F l ow r at e o f N i t ro g e n = %f  N i t r o g e n / m i n ” , V 1 c a p )

check Appendix AP 54 for dependency:

531.sci

Scilab code Exa 5.3.1  chapter 5 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 3 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 3 1 . s c i ’

4   exec ( f i l e n a m e )5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r e

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   P i d e a l = 0 . 0 8 2 0 6 * T / V c a p

67

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 69/154

Figure 5.8: chapter 5 example 8

7   printf ( ”   \n The v al ue o f p r e s s u r e a s p er I d e a l g ase q u a t i o n = % f a t m ” , P i d e a l )

8   T r = T / T c

9   B 0 = 0 . 0 83 - ( 0 . 42 2 / ( T r ) ^ 1 .6 )

10   B 1 = 0 . 1 39 - ( 0 . 17 2 / ( T r ) ^ 4 .2 )

11   B = 0 . 0 8 2 0 6 * T c * ( B 0 + w * B 1 ) / P c

12   P v i ri a l = 0 . 0 8 20 6 * T * ( 1 + B / V c ap ) / V c a p13   printf ( ”\n The v a lu e o f p r e s s u r e a s p e r V i r i a l g a s

e q u a t i o n = % f a t m ” , P v i r i a l )

14   e = ( P i d e a l - P v i r i a l ) * 1 0 0 / P v i r i a l

15   printf ( ”   \n P er ce nt ag e e r r o r due t o I d e a l g asE q u a t i o n = % f ” ,e )

check Appendix AP 53 for dependency:

532.sci

Scilab code Exa 5.3.2  chapter 5 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 3 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 3 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   V c a p = V / n

7   a = 0 . 42 7 4 7 *( R * T c ) ^ 2 / P c

68

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 70/154

Figure 5.9: chapter 5 example 9

8   b = 0 . 0 8 6 6 4 * R * T c / P c

9   m = 0 . 4 8 5 08 + 1 . 5 17 1 * w - 0 .1 5 61 * w * w

10   T r = T / T c

11   a l p h a = ( 1+ m * (1 - sqrt ( T r ) ) ) ^ 2

12   P = ( R * T / ( V c a p - b ) ) - ( a l p h a * a / ( V c a p * ( V c a p + b ) ) )

13   printf ( ”   \n P r es s ur e o f g as c a l c u l a t e d u s in g SRK

e q u a t i o n = % f a t m ” ,P )

check Appendix AP 52 for dependency:

541.sci

Scilab code Exa 5.4.1 chapter 5 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 4 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   z = 0 . 9 3 4

7   printf ( ”   \n From t h e T ab le , z= %f ” ,z )

8   n c a p = P * V c a p * 1 0 1 . 3 2 5 / ( z * R * T * 1 . 0 1 3 2 5 )9   m c a p = n c a p * M

10   printf ( ”   \n Mass f l o w r a t e o f Methane = %f Kg/ h r ” ,

 mcap )

69

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 71/154

Figure 5.10: chapter 5 example 10

check Appendix AP 51 for dependency:

542.sci

Scilab code Exa 5.4.2  chapter 5 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 4 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   T r = T / T c7   P r = P / P c

8   V r i d e a l = V * P c / ( n * R * T c )

9   printf ( ”   \n Tr= %f” , T r )

10   printf ( ”   \n P r= %f ” , P r )

11   printf ( ”\n V r i d e a l =%f ” , V r i d e a l )

12   z = 1 . 7 7

13   printf ( ”\n From t h e g r a p h s , z=%f ” ,z )

14   P = z * R * T * n / V

15   printf ( ”   \n P r es s ur e i n t he c y l i n d e r = %f atm” ,P )

check Appendix AP 50 for dependency:

543.sci

70

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 72/154

Figure 5.11: chapter 5 example 11

Scilab code Exa 5.4.3  chapter 5 example 11

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 5 4 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 5 4 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t he v a l ue s i n t he t ex tb oo k a r eA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” A p pl yi ng n ewt on c o r r e c t i o n s f o r Hydrogen , ” )

7   T c a H 2 = T c H 2 + 8

8   P c a H 2 = P c H 2 + 8

9   T c b a r = y H2 * T c a H 2 + y N 2 * T cN 2

10   P c b a r = y H2 * P c a H 2 + y N 2 * P cN 211   T r b a r = T / T c b a r

12   P r b a r = P / P c b a r

13   printf ( ”   \n Trbar=%f” , T r b a r )

14   printf ( ”   \n Pcbar=%f” , P c b a r )

15   Z m = 1 . 8 6

16   printf ( ”   \n From the graph , Zm=%f”, Z m )

17   V c a p = Z m * R * T / P

18   printf ( ”   \n S p e c i f i c Volume o f M ix tu re= %f L / mol ” ,

V c a p )

71

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 73/154

Chapter 6

Multiphase Systems

check Appendix AP 49 for dependency:

611.sci

Scilab code Exa 6.1.1  chapter 6 example 1

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 1 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 1 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

Figure 6.1: chapter 6 example 1

72

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 74/154

Figure 6.2: chapter 6 example 2

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” l e t d e l ta H v /R = S ” )

7   S = - ( T1 * T2 *   log ( P 2 / P 1 ) ) / ( T 1 - T 2 )

8   d e l t a h v = S * R

9   printf ( ”   \n L a t e nt H ea t o f V a p o r i z a t i o n =%d” , d e l t a h v )

10   B = log ( P1 ) + S /T1

11   printf ( ”\n B=%f” ,B )

12   P = exp ( - S / T + B )

13   printf ( ”\n P∗   a t %f K = %f ”, T , P )

check Appendix AP 48 for dependency:

631.sci

Scilab code Exa 6.3.1  chapter 6 example 2

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 3 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 3 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   y = P s t a r / P7   printf ( ”   \n Molar c o mp o s it i o n o f Water i s %f and A ir

i s %f” , y , 1 - y )

check Appendix AP 47 for dependency:

73

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 75/154

Figure 6.3: chapter 6 example 3

632.sci

Scilab code Exa 6.3.2  chapter 6 example 3

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 3 2 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 3 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   P = y * P T

7   if ( P < 7 6 0 )

8   disp ( ” The V apo ur i s S u pe r h e a t ed ” )

9   elseif ( P = 7 6 0 )

10   disp ( ” The v a po u r i s At Dew p o i n t ” )11   else

12   disp ( ” The v a po ur i s n ot S up er h e at e d ”)

13   end

14   disp ( ” From t a b l e s Tdp=90 C ”)

74

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 76/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 77/154

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   P = h r * P 7 5

7   y = P / P o r i g

8   n d o t = P o r i g B a r * V d o t / ( R * T )

9   n d o t W a t e r = n d o t * y

10   printf ( ”   \n M ol ar f l o w r a t e o f W ater=%f K mol / h” ,

n d o t W a t e r )

11   n d o t B D A = n d o t * ( 1 - y )

12   printf ( ”   \n M ol ar f l o w r a t e o f Dry A i r=%f K mol /h ” ,

n d o t B D A )13   n d o t O 2 = n d o t B D A * 0 . 2 1

14   printf ( ”   \n M ol ar f l o w r a t e o f Oxyg en=%f Kmol / h” ,

n d o t O 2 )

15   h m = P / ( P o r i g - P )

16   h a = h m * 1 8 / 2 9

17   h m d o t = P 7 5 / ( P o r i g - P 7 5 )

18   h p = 1 0 0 * h m / h m d o t

19   printf ( ”   \n M ol al H umi di t y=%f mol w at e r /mol BDA” , h m )

20   printf ( ”   \n A b s o l u t e H u m id i t y=%f k g w a t e r / k g BDA” , ha

)

21   printf ( ”   \n P e r c e n t a g e H u m id i t y=%f ” , h p )

check Appendix AP 45 for dependency:

641.sci

Scilab code Exa 6.4.1  chapter 6 example 5

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 4 1 . s c i ’

76

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 78/154

Figure 6.5: chapter 6 example 5

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   y H 2 O = P H 2 O / P

7   y S O 2 = P S O 2 / P

8   y A i r = 1 - y H 2 O - y S O 2

9   disp ( ” U si ng A ir b al an ce , ” )

10   n G 2 = ( 1 - x ) * b a s i s / y A i r11   printf ( ”nG2=%f lbm/ h” , n G 2 )

12   x S O 2 = y / 1 0 2

13   x H 2 O = 1 - x S O 2

14   disp ( ” U s i ng SO2 b a l a nc e , ” )

15   n L 2 = ( b a s i s * x - n G 2 * y S O 2 ) * M 1 / ( x S O 2 )

16   printf ( ”nL2=%d lbm/ h” , n L 2 )

17   disp ( ” U s i n g H2O b a l a n c e , ” )

18   n L 1 = n G2 * y H 2 O * M 2 + n L2 * x H 2 O

19   printf ( ” nL1=%d lbm H2O/h ” , n L 1 )

20   S O 2 A b s o r b e d = n L 2 * x S O 221   S O 2 F e d = b a s i s * x * M 1

22   F r a c t i o n = S O 2 A b s o r b e d / S O 2 F e d

23   printf ( ”   \n F r a c t i o n SO2 a b s o r b e d= %f lbm SO2a b s o r b e d / l bm SO2 f e d ” , F r a c t i o n )

77

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 79/154

Figure 6.6: chapter 6 example 6

check Appendix AP 44 for dependency:

642.sci

Scilab code Exa 6.4.2  chapter 6 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 4 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   x = y * P / H

7   P B s ta r = 1 0 ^ (6 . 90 6 - 1 2 1 1/ ( T + 2 2 0 . 8) )

8   P T s ta r = 1 0 ^ (6 . 95 3 3 - 1 3 4 3. 9 / ( T + 2 1 9. 3 8 ) )

9   P B = x B * P B s t a r

10   P T = ( 1 - x B ) * P T s t a r

11   P t o t a l = P B + P T

12   y B = P B / P t o t a l13   y T = P T / P t o t a l

14   printf ( ”   \n T o t a l s y st em p r e s s u r e =%f mm o f Hg” ,

P t o t a l )

15   printf ( ”   \n C o m p s o it i o n o f b e n z e ne=%f ” , y B )

78

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 80/154

Figure 6.7: chapter 6 example 7

16   printf ( ”   \n C o mp s o it i on o f t o l u e n e =%f ” , y T )

check Appendix AP 43 for dependency:

651.sci

Scilab code Exa 6.5.1  chapter 6 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 5 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 5 1 . s c i ’

4   exec ( f i l e n a m e )5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” C Om po si ti on o f F i l t e r c ak e , ” )

79

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 81/154

7   disp ( ”m2=4m3”)

8   disp ( ” Water b a la n ce a ro un d t he c r y s t a l l i z e r , ” )9   printf ( ”\n %f k g H2O = % f m1 + %f m1” , b a s i s * i n p u t x ,

outputx ,outpu tx)

10   disp ( ” Mass b a la nc e ar ound c r y s t a l l i z e r , ” )

11   printf ( ”   \n %d=m1+m2+m3” , b a s i s )

12   A = [0 1 -4; o ut pu tx 0 o ut pu tx ; 1 1 1 ]

13   b = [ 0 ; b a s i s * i n p u t x ; b a s i s ]

14   C = A \ b

15   / / Here we s o l ve d two l i n e a r e q ua t i on s s i m ul t a ne o us l y16   m 1 = C ( 1 , 1 )

17   printf ( ”   \n m1=%f Kg” , m 1 )

18   m 2 = C ( 2 , 1 )19   printf ( ”   \n m2=%f Kg” , m 2 )

20   m 3 = C ( 3 , 1 )

21   printf ( ”   \n m3=%f Kg” , m 3 )

22   disp ( ” O v e r al l AgNO3 bal anc e , ” )

23   m 5 = ( 1 - i n p ut x ) * b a s is - ( 1 - o u t pu t x ) * m 1

24   printf ( ”m5=%f k g AgNO3 c r y s t a l s r e c o v e r e d ” , m 5 )

25   p e r c e n t a g e = m 5 * 1 0 0 / ( b a s i s * ( 1 - i n p u t x ) )

26   printf ( ”   \n P e r c e n t a g e r e c o v e r y =%f ” , p e r c e n t a g e )

27   disp ( ” O v e r a l l mass b a l a n c e ” )

28   m 4 = b a s i s - m 1 - m 5

29   printf ( ”m4=%d Kg w a t e r r e mo v ed i n t h e D r y e r ” , m 4 )

check Appendix AP 42 for dependency:

652.sci

Scilab code Exa 6.5.2  chapter 6 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 5 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 5 2 . s c i ’

80

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 82/154

Figure 6.8: chapter 6 example 8

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   o u t p u t x = S / ( S + 1 0 0 )

7   printf ( ” x=%f Kg KNO3/Kg” , o u t p u t x )

8   disp ( ” Water b a l a n c e ” )9   m 1 = b a s i s * ( 1 - i n p u t x ) / ( 1 - o u t p u t x )

10   printf ( ”   \n m1=%f Kg” , m 1 )

11   disp ( ” Mass b a l a n c e ” )

12   m 2 = b a s i s - m 1

13   printf ( ”   \n m2=%f kg ” , m 2 )

14   p e r c e n t a g e = m 2 * 1 0 0 / ( b a s i s * i n p u t x )

15   printf ( ”   \n P e rc e nt a ge o f KNO3 i n t he f e e d t h atc r y s t a l l i z e s i s %f” , p e r c e n t a g e )

check Appendix AP 41 for dependency:

653.sci

81

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 83/154

Figure 6.9: chapter 6 example 9

Scilab code Exa 6.5.3  chapter 6 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 5 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 5 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” T o t a l mass b a l a n c e ” )

7   disp ( ”m1=1+m2” )

8   disp ( ”MgSO4 ba l a nc e ” )

9   printf ( ”   \n %f m1 = %d∗   % f / %f + m2 %f ” , i n p u t x ,

b a s i s , M , M 1 , o u t p u t x )

10   A = [ 1 - 1; i n p u tx - o u t pu t x ]11   b = [ 1 ; b a s i s * M / M 1 ]

12   C = A \ b

13   / / Here we s o l ve d two l i n e a r e q ua t i on s s i m ul t a ne o us l y14   m 1 = C ( 1 , 1 )

82

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 84/154

Figure 6.10: chapter 6 example 10

15   m 2 = C ( 2 , 1 )

16   printf ( ”   \n m1=%f Tonne/h ” , m 1 )

17   printf ( ”   \n m2=%f Tonne/h ” , m 2 )

check Appendix AP 40 for dependency:

654.sci

Scilab code Exa 6.5.4  chapter 6 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 5 4 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 5 4 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   x = ( T f - 1 0 0 ) * 4 0 6 5 6 / ( R * 3 7 3 . 1 6 ^ 2 )

7   y = m 2 / 1 8 . 0 1 6

8   M s = m 1 * ( 1 - x ) / ( y * x )

9   printf ( ”   \n Ms=%f ” , M s )

10   d e l ta T m = R * ( 2 7 3 .1 6 ) ^ 2 * x / 6 0 0 9. 5

11   T m s = 0 - d e l t a T m12   printf ( ”   \n Tms=%f ” , T m s )

13   P s t a r = ( 1 - x ) * 2 3 . 7 5 6

14   printf ( ”   \n S o l v e n t V ap ou r p r e s s u r e =%f mm Hg ”, P s t a r )

83

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 85/154

Figure 6.11: chapter 6 example 11

check Appendix AP 39 for dependency:

661.sci

Scilab code Exa 6.6.1  chapter 6 example 11

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 6 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 6 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   D b a r = D A * DW / ( x * D W + ( 1 - x ) * DA )

7   m a s s 1 = V 1 * D b a r

8   m a s s 2 = V 2 * D C

9   disp ( ” C b a l a n c e ” )10   m 4 = m a s s 2

11   printf ( ”   \n m4=%f ” , m 4 )

12   disp ( ”W b a l a n c e ” )

13   m 2 = ( 1 - x ) * m a s s 1

84

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 86/154

Figure 6.12: chapter 6 example 12

14   printf ( ”   \n m2=%f ” , m 2 )

15   disp ( ” A b a l a n c e ” )

16   printf ( ”m1+m3=%f   ∗   %f ” , x , m a s s 1 )

17   disp ( ” D i s t r i b u t i o n C o o e f f i c i e n t ,K=m3∗(m1+m2) /m1∗ (m3+m4) ” )

18   disp ( ”On s o l v i n g , ” )

19   m 1 = 2 . 7

20   m 3 = 1 6 . 8

21   p e r c e n t a g e = m 3 * 1 0 0 / ( x * m a s s 1 )22   printf ( ”   \n m1=%f ” , m 1 )

23   printf ( ”   \n m3=%f ” , m 3 )

24   printf ( ”   \n p e r c e nt ag e o f a ce to ne t r a n s f e r r e d t oc h l o r o f o r m = % f ”, p e r c e n t a g e )

check Appendix AP 38 for dependency:

662.sci

Scilab code Exa 6.6.2  chapter 6 example 12

85

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 87/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 88/154

Figure 6.13: chapter 6 example 13

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 6 7 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 6 7 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   n = P * V / ( R * T )

7   printf ( ”   \n No . o f m o l e s=%f m ol ” ,n )

8   y 0 = y * P s t a r / P m m

9   printf ( ”   \n Y0=%f mol CCl4/mol” , y 0 )

10   P f i n a l = x F * P m m

11   b = 0 . 0 9 6 * P f i n a l

12   X s t a r = 0 . 7 9 4 * b / ( 1 + b )

13   printf ( ”   \n Mass o f CCl4 a d so r be d t o Ca rbon a t

e q u i l i b r i u m =%f g CCl4 a d s / g C” , X s t a r )14   M a ds = ( y 0 * n - x F * n ) * 15 4

15   printf ( ”   \n Ma ss o f CCl4 a d s o r b e d=%f g ” , M a d s )

16   M c = M a d s / X s t a r

17   printf ( ”   \n Mass o f c a rb o n R e qu i r ed=%f g ” , M c )

87

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 89/154

88

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 90/154

Chapter 7

Energy And Energy Balances

check Appendix AP 36 for dependency:

721.sci

Scilab code Exa 7.2.1  chapter 7 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 2 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 2 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   u = V d o t * 1 0 0 ^2 / ( % pi * ( I D / 2 ) ^ 2 * 3 6 00 )

7   m d ot = V d o t * 1 0 ^3 / 3 60 0

Figure 7.1: chapter 7 example 1

89

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 91/154

Figure 7.2: chapter 7 example 2

8   E k = m d ot * u ^ 2 / 2

9   printf ( ”   \n Ek=%f J / s ” , E k )

check Appendix AP 35 for dependency:

722.sci

Scilab code Exa 7.2.2  chapter 7 example 2

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 2 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 2 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   P o w e r = m d o t * g * ( z 2 - z 1 )

7   printf ( ”   \n Power=%d J/ s ” , P o w e r )

check Appendix AP 34 for dependency:

741.sci

Scilab code Exa 7.4.1  chapter 7 example 3

90

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 92/154

Figure 7.3: chapter 7 example 3

Figure 7.4: chapter 7 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 4 1 . s c i ’

4   exec ( f i l e n a m e )5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   H c a p = U + P * V c a p * 1 0 1 . 3

7   H = n d o t * H c a p * 1 0 ^ 3

8   printf ( ”   \n S p e c i f i c E n th a lp y=%d J / m ol ” , H c a p )

9   printf ( ”\n E n t h a l p y o f H e li u m=%E J / h ” ,H )

check Appendix AP 33 for dependency:

742.sci

91

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 93/154

Figure 7.5: chapter 7 example 5

Scilab code Exa 7.4.2  chapter 7 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 4 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   E k = m d o t * 1 0 ^ ( - 3 ) * ( u 2 ^ 2 - u 1 ^ 2 ) / 2

7   E p = m d o t * g * d e l t a Z / 1 0 ^ 38   Q d o t = Q d o t / ( 0 . 2 3 9 * 3 6 0 0 )

9   H d o t = Q d o t - W s - E k - E p

10   printf ( ”   \n De lt aH=%f KW” , H d o t )

11   H c a p = H d o t / m d o t

12   printf ( ”\n S p e c i f i c E n th a lp y=%f Kj /Kg” , H c a p )

check Appendix AP 32 for dependency:

751.sci

Scilab code Exa 7.5.1  chapter 7 example 5

92

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 94/154

Figure 7.6: chapter 7 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 5 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 5 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   d e l t a H = H 0 - H 5 0

7   d e l t a U = d e l t a H + ( ( P f i n a l * V f i n a l - P i n i t i a l * V i n i t i a l )

* 1 . 9 8 7 / 1 0 . 7 3 )

8   printf ( ”   \n c ha n ge i n S p e c i f i c E nt h al p y=%f B tu / lbm ” ,

d e l t a H )

9   printf ( ”   \n c ha ng e i n S p e c i f i c I n t e r n a l En erg y=%f  Btu/lbm” , d e l t a U )

check Appendix AP 31 for dependency:

753.sci

Scilab code Exa 7.5.3  chapter 7 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 5 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 5 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

93

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 95/154

Figure 7.7: chapter 7 example 7

6   disp ( ” From Stea m t a b l e s , ” )

7   H i n = 3 2 0 1   //Kj/Kg8   H o u t = 2 6 7 5   //Kj/Kg9   W s = - m d ot * ( H o ut - H i n ) / 3 60 0

10   printf ( ” Work d e l i v e r e d by T u rb i ne t o s u r r o u n d i n g s =%dKw” , W s )

check Appendix AP 30 for dependency:

761.sci

Scilab code Exa 7.6.1  chapter 7 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 6 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 6 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

94

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 96/154

Figure 7.8: chapter 7 example 8

6   d e l t a H = m 3 * H 3 - m 1 * H 1 - m 2 * H 2

7   disp ( ” From t a b l e s , V do t = 0 . 1 1 6 6 mˆ 3 / k g ” )

8   V d o t = 0 . 1 1 6 6

9   A = % p i * ( I D / 2) ^ 2 / 1 0^ 4

10   u = m 3 * V d o t / ( A * 6 0 )

11   E k = m 3 * u ^ 2 / ( 2 *1 0 ^ 3)

12   Q d o t = d e l t a H + E k

13   printf ( ”H e at r e q u i r e d=%E Kj /min” , Q d o t )

check Appendix AP 29 for dependency:

762.sci

Scilab code Exa 7.6.2  chapter 7 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 6 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 6 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

95

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 97/154

Figure 7.9: chapter 7 example 9

6   Q d o t = b a s i s * ( x * H o u t 1 + ( 1 - x ) * H o u t 2 - x * H i n 1 - ( 1 - x ) * H i n 2 )

7   printf ( ”   \n H ea t r e q u i r e d =%f KJ /Kg ”, Q d o t / b a s i s )

check Appendix AP 28 for dependency:

763.sci

Scilab code Exa 7.6.3  chapter 7 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 6 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 6 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” M as s b a l a n c e o n W ate r , ” )

7   disp ( ”m3+m1=m2” )

8   disp ( ” E n e r g y b a l a n c e , ” )

96

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 98/154

Figure 7.10: chapter 7 example 10

9   disp ( ”m3∗H3+m1∗H1=m2∗H2” )

10   A = [ 1 , - 1 ; H 2 , - H 1 ]

11   b = [ m 3 ; m 3 * H 3 ]

12   C = A \ b

13   // h er e we s o l ve d two l i n e a r e q ua t i on s s i m ul t a ne o us l y.

14   m 2 = C ( 1 , 1 )

15   m 1 = C ( 2 , 1 )

16   printf ( ” I n p u t f l o w r a t e , m1=%f Kg /h ” , m 1 )

17   printf ( ”   \n O ut pu t f l o w r a t e , m2=%f Kg /h ” , m 2 )

18   disp ( ”From t a bl e s , V dot = 3. 11 mˆ3/k g ” )

19   V d o t = 3 . 1 1

20   printf ( ” V o l u m e tr i c i n p u t f l o w r a t e =%f mˆ 3/ h ”, m 1 * V d o t

)

check Appendix AP 27 for dependency:

771.sci

Scilab code Exa 7.7.1  chapter 7 example 10

97

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 99/154

Figure 7.11: chapter 7 example 11

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 7 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 7 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   u 1 = V d o t * 1 0^ 4 / ( 1 0^ 3 * 6 0* % p i * ( I D 1 / 2) ^ 2 )

7   u 2 = V d o t * 1 0^ 4 / ( 1 0^ 3 * 6 0* % p i * ( I D 2 / 2) ^ 2 )8   d el t aP = - ( ( u2 ^ 2 - u 1 ^2 ) /2 + g * d el ta Z ) * 10 ^3

9   P 1 = P 2 - d e l t a P

10   printf ( ”   \n P1=%E Pa” , P 1 )

check Appendix AP 26 for dependency:

772.sci

Scilab code Exa 7.7.2  chapter 7 example 11

1   clc

98

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 100/154

Figure 7.12: chapter 7 example 12

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 7 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 7 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   u2 = sqrt ( 2 * 3 2 . 1 7 4 * ( - F - g * d e l t a Z / 3 2 . 1 7 4 ) )

7   V d ot = u 2 * % p i * ( I D / 2) ^ 2 / 1 44

8   t = V * 0 . 1 3 3 7 / ( V d o t * 6 0 )

9   printf ( ” T o t a l t i m e t a k e n=%f min ” ,t )

check Appendix AP 25 for dependency:

773.sci

Scilab code Exa 7.7.3  chapter 7 example 12

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 7 7 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 7 7 3 . s c i ’

99

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 101/154

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   m do t = - Ws / ( d el ta P / D + g * d el ta Z )

7   printf ( ”   \n Water f l o w r a t e =%f kg / s ” , m d o t )

100

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 102/154

Chapter 8

Balances On Nonreactive

Processes

check Appendix AP 24 for dependency:

831.sci

Scilab code Exa 8.3.1  chapter 8 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 3 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 3 1 . s c i ’4   exec ( f i l e n a m e )

Figure 8.1: chapter 8 example 1

101

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 103/154

Figure 8.2: chapter 8 example 2

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok   \n ” )

6   function [ C v ] = f u n ( T )

7   C v = 0 . 85 5 + T * 9 . 4 2* 1 0 ^( - 4 )

8   e n d f u n c t i o n9   [ U c a p , e r r ] = intg ( T i , T f , f u n )   // i n t g i s an i n b u l t

f u n c t i o n u se d f o r d e f i n i t e i n t e g r a t i o n10   Q = m a s s * U c a p

11   printf ( ”H e at R e q ui r e d=%f KJ ”,Q )

check Appendix AP 23 for dependency:

832.sci

Scilab code Exa 8.3.2  chapter 8 example 2

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 3 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 3 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok   \n ” )

6   disp ( ” p a rt 1 ”)

7   function [ C p ] = f u n 1 ( T )

102

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 104/154

Figure 8.3: chapter 8 example 3

8   C p = 0. 0 29 0 0+ T * 0. 2 19 9 *1 0 ^( - 5 ) + T ^ 2 * 0. 57 23

* 10 ^( - 8 ) - T ^3 * 2 .8 71 * 1 0^ ( -1 2)

9   e n d f u n c t i o n

10   [ d e l t a H , e r r ] = intg ( T 1 , T 2 , f u n 1 )   / / i n t g i s an i n b u l tf u n c t i o n u se d f o r d e f i n i t e i n t e g r a t i o n

11   Q d o t = n d o t * d e l t a H

12   printf ( ” H e a t T r a n s f e r r e d =%f KJ/ m in ” , Q d o t )13   disp ( ” p a r t 2 ”)

14   function [ C V ] = f u n 2 ( T )

15   C V = f u n1 ( T ) - 8. 14 * 1 0 ^( - 3 )

16   e n d f u n c t i o n

17   [ d e l t a U , e r r ] = intg ( T 3 , T 4 , f u n 2 )   / / i n t g i s an i n b u l tf u n c t i o n u se d f o r d e f i n i t e i n t e g r a t i o n

18   n = P * V / ( R * T )

19   Q = n * d e l t a U

20   printf ( ” H ea t t r a n s f e r r e d =%f KJ” ,Q )

check Appendix AP 22 for dependency:

833.sci

Scilab code Exa 8.3.3  chapter 8 example 3

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 3 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 3 3 . s c i ’4   exec ( f i l e n a m e )

103

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 105/154

Figure 8.4: chapter 8 example 4

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok   \n ” )

6   function [ C p ] = f u n ( T )

7   Cp = 0 .0 28 94 + T * 0. 41 47 * 1 0^ ( -5 ) + T ^2 * 0 .3 19 1 *

1 0^( - 8) - T ^3 * 1 .9 65 * 1 0^ ( -1 2)

8   e n d f u n c t i o n9   d e l t a H = intg ( T 1 , T 2 , f u n )   // i n t g i s an i n b ul t f u nc t i o n

us e d f o r d e f i n i t e i n t e g r a t i o n10   Q d ot = n d o t * d e l t aH * 1 0 ^ 3 / 60

11   printf ( ”   \n R at e o f h e a t r e m o va l= %f KW” , Q d o t )

check Appendix AP 21 for dependency:

834.sci

Scilab code Exa 8.3.4  chapter 8 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 3 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 3 4 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a re

A pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok   \n ” )

6   function [ C p 1 ] = f u n 1 ( T )

7   C p1 = 0 . 04 9 37 + T * 1 3. 92 * 10 ^ ( - 5) - T ^ 2

* 5. 8 16 * 10 ^( - 8) + T ^ 3 * 7. 2 80 * 1 0^ ( - 12 )

104

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 106/154

Figure 8.5: chapter 8 example 5

8   e n d f u n c t i o n

9   function [ C p 2 ] = f u n 2 ( T )

10   C p2 = 0 . 06 8 03 + T * 2 2. 5 9* 1 0^ ( - 5 ) - T ^ 2

* 13 . 11 * 10 ^( - 8) + T ^ 3 * 31 . 71 * 1 0^ ( - 12 )

11   e n d f u n c t i o n

12   function [ C p ] = f u n ( T )

13   C p = x * f un 1 ( T ) + ( 1 - x ) * f un 2 ( T )

14   e n d f u n c t i o n

15   d e l t a H = intg ( T 1 , T 2 , f u n )   // i n t g i s an i n b u l t f u nc t i o n

u s e d f o r d e f i n i t e i n t e g r a t i o n16   printf ( ”   \n H ea t c a p a c i t y o f M i x tu r e=%f KJ/ m ol ” ,

d e l t a H )

17   Q d o t = n d o t * d e l t a H

18   printf ( ”   \n H e at R e q ui r e d=%f KJ /h”, Q d o t )

check Appendix AP 20 for dependency:

835.sci

Scilab code Exa 8.3.5  chapter 8 example 5

105

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 107/154

Figure 8.6: chapter 8 example 6

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 3 5 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 3 5 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok   \n ” )

6   n d o t = V d o t / 2 2 . 4

7   function [ C p ] = f u n ( T )

8   C p = 0. 0 34 3 1 + T * 5 .4 6 9* 1 0^ ( - 5 ) + T ^ 2

* 0 . 36 6 1 *1 0 ^ ( - 8 ) + T ^ 3 * 1 1 *1 0 ^( - 1 2)

9   e n d f u n c t i o n

10   H1 = intg ( T 1 , T 2 , f u n )   // i n t g i s an i n b u l t f u nc t i o nu s e d f o r d e f i n i t e i n t e g r a t i o n

11   printf ( ”H1=%f Kj/ mol ” , H 1 )

12   disp ( ”From T abl e s H2=   −0.15 Kj / mol , H3=8.17 Kj /

mol” )13   H 2 = - 0. 15

14   H 3 = 8 . 1 7

15   Q d ot = ( n d o t * x * H 1 + n d ot * ( 1 - x ) * ( H3 - H 2 ) ) / 6 0

16   printf ( ” Heat In pu t=%f KW” , Q d o t )

check Appendix AP 19 for dependency:

841.sci

Scilab code Exa 8.4.1  chapter 8 example 6

106

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 108/154

Figure 8.7: chapter 8 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 4 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok   \n ” )

6   Q d o t = m d o t * d e l t a H v / ( M * 6 0 )

7   printf ( ” R a te o f H ea t t r a n s f e r =%f KW” , Q d o t )

check Appendix AP 18 for dependency:

842.sci

107

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 109/154

Figure 8.8: chapter 8 example 8

Scilab code Exa 8.4.2  chapter 8 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 4 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 4 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ”We h a ve d e lt a H v a t 6 9C h e n c e We f o l l o w p at hADG” )

7   d e l ta H A = C p * ( T2 - T 1 ) + V * ( 1 .0 1 3 - P ) * M / ( D * 1 0 ^4 )

8   printf ( ”   \n deltaHA=%f” , d e l t a H A )

9   d e l t a H D = d e l t a H v

10   printf ( ”   \n deltaHD=%f” , d e l t a H D )

11   function [ C ] = f u n 1 ( T )

12   C = 0 .1 37 4 4 + T * 4 0. 8 5* 10 ^ ( - 5 ) - T ^ 2 * 23 . 92 * 10 ^( - 8)

+ T ^ 3 * 57 . 66 * 10 ^ ( - 1 2)13   e n d f u n c t i o n

14   d e l t a H G = intg ( T 2 , T 3 , f u n 1 )   // i n t g i s an i n b ul tf u n c t i o n u se d f o r d e f i n i t e i n t e g r a t i o n

15   printf ( ”   \n deltaHG=%f Kj/mol” , d e l t a H G )

16   Q d o t = n d o t * ( d e l t a H A + d e l t a H D + d e l t a H G ) / 3 6 0 0

17   printf ( ”   \n r a t e o f Hea t s u p pl y= %f K j/ mol ” , Q d o t )

18   printf ( ”   \n I n t h i s pr obl em we n e g l ec t e d V∗ d e lt a P a si t i s n e g l i g i b l e ” )

check Appendix AP 17 for dependency:843.sci

108

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 110/154

Scilab code Exa 8.4.3  chapter 8 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 4 3 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 4 3 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )6   disp ( ” u s i n g T ro ut on r u l e , ” )

7   d e l t a H v T 1 = 0 . 1 0 9 * T 1

8   disp ( ” In t h i s c a s e , t ro ut on r u l e g i v e s a b e t t e re s t i m a t e ” )

9   disp ( ” u s i n g Watson c o r r e c t i o n ” )

10   d e l t a H v T 2 = 3 6 . 8 * ( ( T c - T 2 ) / ( T c - T 1 ) ) ^ ( 0 . 3 8 )

11   printf ( ” E s t i m at e d v a l u e u s i n g T ro ut on r u l e =%f K j/ mol” , d e l t a H v T 1 )

12   printf ( ”   \n E st im at ed v a l ue u s i ng wa ts on c o r r e c t i o n =%f K j / mo l ” , d e l t a H v T 2 )

check Appendix AP 16 for dependency:

844.sci

Scilab code Exa 8.4.4  chapter 8 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 4 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 4 4 . s c i ’4   exec ( f i l e n a m e )

109

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 111/154

Figure 8.9: chapter 8 example 9

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   A = [1 1; x y ]

7   b = [ b a s i s ; b a s i s / 2 ]

8   C = A \ b

9   / / Here We s o l v e d two l i n e a r e q u a ti o n s s i m u l t a n eo u s l y

10   n V = C ( 1 , 1 )11   n L = C ( 2 , 1 )

12   H 1 = 5 . 3 3 2

13   H 2 = 6 . 3 4 0

14   H 3 = 3 7 . 5 2

15   H 4 = 4 2 . 9 3

16   Q = n V * x* H 1 + n V *( 1 - x )* H 2 + n L *y * H3 + n L *( 1 - y )* H 4

17   printf ( ”   \n Heat t r a n s f e r r e d = %f Kj ”,Q )

18   disp ( ” The a ns we r f o r t h i s p ro bl em i n Text i s wrong ” )

check Appendix AP 15 for dependency:

851.sci

110

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 112/154

Figure 8.10: chapter 8 example 10

Scilab code Exa 8.5.1  chapter 8 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 5 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 5 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   n H C l = m d ot * x * 1 0 ^ 3 / M 1

7   n H 2O = m d o t * (1 - x ) * 1 0 ^ 3 / M 2

8   function [ C p 1 ] = f u n ( T )

9   C p1 = 2 9 . 1 3 *1 0 ^ ( - 3 ) - T * 0 . 1 34 1 * 10 ^ ( - 5 ) + T ^ 2

* 0 . 97 1 5 *1 0 ^ ( - 8 ) - T ^ 3 * 4 . 33 5 * 10 ^ ( - 1 2 )

10   e n d f u n c t i o n

11   H1 = intg ( T 1 , T 2 , f u n )   // i n t g i s an i n b u l t f u nc t i o nu s e d f o r d e f i n i t e i n t e g r a t i o n

12   disp ( H 1 )

13   r = n H 2 O / n H C l

14   disp ( ” From t a b l e B . 1 1 , d e l ta H a=   −67. 4 Kj /mol HCl ” )

111

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 113/154

Figure 8.11: chapter 8 example 11

15   d e l t a Ha = - 67 .4

16   y = n H C l / ( n H C l + n H 2 O )

17   C p = 0 . 7 3 * m d o t * 4 . 1 8 4 / n H C l

18   d e l t a H b = C p * ( T 3 - T 1 )

19   H 2 = d e l t a H a + d e l t a H b

20   Q d o t = n H C l * ( H 2 - H 1 )

21   printf ( ”Heat =%E kj /h” , Q d o t )

check Appendix AP 14 for dependency:

852.sci

Scilab code Exa 8.5.2  chapter 8 example 11

1   clc2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 5 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 5 2 . s c i ’4   exec ( f i l e n a m e )

112

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 114/154

Figure 8.12: chapter 8 example 12

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” s u l p h u r i c a c id b a la nc e ” )

7   m 2 = x * m d o t / y8   disp ( ” T o t a l Mass b a l a n ce ” )

9   m 1 = m d o t - m 2

10   Q d o t = m 1 * H v + m 2 * H l - m d o t * H f

11   printf ( ” Rate o f Heat t r a n s f e r = %f Btu /h ”, Q d o t )

check Appendix AP 13 for dependency:

855.sci

Scilab code Exa 8.5.5  chapter 8 example 12

113

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 115/154

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 8 5 5 . s c e ’ )3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 8 5 5 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” From f i g u r e 8 .5 −2 , ” )

7   x L = 0 . 1 8 5

8   x V = 0 . 8 9

9   m L = b a s i s * ( ( x V - x F ) / ( x V - x L ) )

10   m V = b a s i s - m L

11   Q do t =m V* Hv + mL * Hl - b as is * HF12   printf ( ” R ate o f h e at t r a n s f e r =%f B tu /h ”, Q d o t )

114

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 116/154

Chapter 9

Balances On Reactive Processes

check Appendix AP 12 for dependency:

911.sci

Scilab code Exa 9.1.1  chapter 9 example 1

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 1 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 1 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” P ar t 1 ”)

7   E 1 = n do t /4

8   d e l t a H 1 = E 1 * H r 1

9   printf ( ” e n t h a l p y c h a n g e=%E K j / s ” , d e lt a H1 )10   disp ( ” p a r t 2 ”)

11   H r 2 = 2 * H r 1

12   E 2 = n d o t / 8

13   d e l t a H 2 = E 2 * H r 2

115

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 117/154

Figure 9.1: chapter 9 example 1

Figure 9.2: chapter 9 example 2

14   printf ( ” E n t h a l p y c h a n g e=%E k j / s ” , d e l t a H 2 )15   disp ( ” p a rt 3 ”)

16   H r 3 = H r 1 + 5 * H v W a t e r + H v B u t a n e

17   d e l t a H 3 = E 1 * H r 3

18   printf ( ” E n t h a l p y c h a n g e=%E k j / s ” , d e l t a H 3 )

check Appendix AP 11 for dependency:

912.sci

Scilab code Exa 9.1.2  chapter 9 example 2

116

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 118/154

Figure 9.3: chapter 9 example 3

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 1 2 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 1 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ”From r e a c t io n , o n ly g a s eo u s a r e c ou nt ed ” )

7   l e f t = 1 + 2

8   r i g h t = 1 + 1

9   d e l t a U r = d e l t a Hr - R * T * ( r i g h t - l e f t ) / 1 0 ^ 3

10   printf ( ” d e l t a U r =%f K j / mo l ” , d e l t a U r )

check Appendix AP 10 for dependency:

931.sci

Scilab code Exa 9.3.1  chapter 9 example 3

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 3 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 3 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   H r = 5 * H C O 2 + 6 * H H 2 O - H C 5 H 1 2

7   printf ( ”   \n H ea t o f t h e r xn= %f KJ/ mol ” , H r )

117

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 119/154

Figure 9.4: chapter 9 example 4

check Appendix AP 9 for dependency:

941.sci

Scilab code Exa 9.4.1  chapter 9 example 4

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 4 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 4 1 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   Hr= Hethane -Hethene -H hydrogen

7   printf ( ”   \n Hea t o f t h e r xn= %f Kj / mol ” , H r )

check Appendix AP 8 for dependency:

951.sci

Scilab code Exa 9.5.1  chapter 9 example 5

118

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 120/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 121/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 122/154

Figure 9.6: chapter 9 example 6

121

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 123/154

6   function [ C p ] = f u n 1 ( T )

7   C p = 34 . 31 * 10 ^( - 3) + T * 5. 4 69 * 10 ^( - 5) + T ^ 2 * 0. 36 61*1 0^ ( -8 ) - T ^3 * 11 * 1 0^( - 12 )

8   e n d f u n c t i o n

9   H o u t M e t h a n e = intg ( T 1 , T 2 , f u n 1 )

10   H 4 = - 74 .8 5 + H o ut M et h an e

11   function [ C ] = f u n 2 ( T )

12   C = 3 4. 2 8* 1 0^ ( - 3 ) + T * 4 .2 6 8* 10 ^ ( - 5 ) - T ^ 3 * 8. 69 4 *

1 0 ^ ( - 1 2 )

13   e n d f u n c t i o n

14   H o u t F o r m a l = intg ( T 1 , T 2 , f u n 2 )   / / i n t g i s an i n b u i l tf u n c t i o n which can c a l c u l a t e d e f i n i t e i n t e g r a l s

15   H 7 = - 1 15 . 90 + H o u tF o r m al16   d e l t a H = N o u t W a t e r * H 9 + N o u t C a r b o n * H 8 + N o u t F o r m a l * H 7 +

N o u t N i t r o g e n * H 6 + N o u t O x y g e n * H 5 + N o u t M e t h a n e * H 4 -

N i n N i t r o g e n * H 3 - N i n O x y g e n * H 2 - N i n M e t h a n e * H 1

17   Q = d e l t a H

18   printf ( ”   \n Q=%f Kj” ,Q )

check Appendix AP 6 for dependency:

954.sci

Scilab code Exa 9.5.4  chapter 9 example 7

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 5 4 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 5 4 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” C ar bo n B a l a n c e ” )

122

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 124/154

Figure 9.7: chapter 9 example 7

123

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 125/154

Figure 9.8: chapter 9 example 8

7   printf ( ”%d   ∗   %f    ∗2 + %d   ∗   %f    ∗2=2 n1+2 n2” , b a s i s , x ,

basis ,1- x)

8   disp ( ” H y dr og en B a l a n c e ” )

9   printf ( ”%d   ∗   %f    ∗6 + %d   ∗   %f    ∗4 = 6 n 1+4 n 2+2 n 3 ”,

basis,x ,basis ,1-x)10   disp ( ” E n er gy B a l a nc e ” )

11   printf ( ”%d = %f n1 %f n2 + %f n3   −%d   ∗   %f   −%d∗   %f ” ,

Q, HoutEthanol ,HoutEtha none ,HoutHy drogen ,

NinEthanol ,HinEthanol ,NinEthanone ,H inEthanon e)

12   A = [ 1 1 0 ;3 2 1 ;2 16 .8 1 1 50 .9 - 6. 59 5]

13   b = [ 1 5 0 ; 4 3 5 ; 2 8 4 1 2 ]

14   C = A \ b

15   n 1 = C ( 1 , 1 )

16   printf ( ”   \n n 1=%f m ol E t h a n o l / s ” , n 1 )

17   n 2 = C ( 2 , 1 )

18   printf ( ”   \n n 2=%f m ol E t ha n o ne / s ” , n 2 )19   n 3 = C ( 3 , 1 )

20   printf ( ”   \n n 3=%f m ol H y dr o ge n / s ” , n 3 )

21   disp ( ” The s o l u t i o n s i n t he Text a r e Wrong ”)

22   f r a c t i o n = ( N i n E t h a n ol - n 1 ) / N i n E t h a n o l

23   printf ( ” F r a c t i o n a l c o n v e r s i o n o f E th a no l=%f ”,

f r a c t i o n )

check Appendix AP 5 for dependency:

955.sci

124

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 126/154

Figure 9.9: chapter 9 example 9

Scilab code Exa 9.5.5  chapter 9 example 8

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 5 5 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 5 5 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )6   disp ( ” p a rt 1 ”)

7   Hr= HfSalt +3*HfWater -HfAcid -3*HfBase

8   printf ( ” Hr o f t h e r x n=%f Kj / m ol ” , H r )

9   disp ( ” p a rt 2 ”)

10   d e l t a H = H r * 5 / 3

11   printf ( ” de l t aH =%f Kj ” , d e l t a H )

check Appendix AP 4 for dependency:

956.sci

125

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 127/154

Scilab code Exa 9.5.6  chapter 9 example 9

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 5 6 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 5 6 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   disp ( ” U si ng S b al an ce , ” )

7   m 2 = b a s i s * x * M S * M S a l t / ( M A c i d * M S )

8   printf ( ”   \n m2=%f g Na2SO4” , m 2 )

9   disp ( ” U s in g Na b a la n ce , ” )10   m 1 = 2 * M N a * m 2 * M B a s e / ( y * M N a * M S a l t )

11   printf ( ”   \n m1=%f g NaOH” , m 1 )

12   disp ( ” T o t a l mass b a la n ce , ” )

13   m 3 = b a s i s + m 1 - m 2

14   printf ( ”   \n m3=%f g H2O”, m 3 )

15   printf ( ”   \n Mass o f p ro du ct s o l u t i o n =%f” , m 2 + m 3 )

16   m = m 2 + m 3

17   W a t e r = m 2 * 2 / M S a l t

18   printf ( ”   \n Wa ter Formed i n t h e r e a c t i o n =%f m ol H2O”, W a t e r )

19   disp ( ”H2SO4( aq ) : ” )

20   a 1 = b a s i s * ( 1 - x ) / M W a t e r

21   b 1 = b a s i s * x / M A c i d

22   r A c i d = a 1 / b 1

23   printf ( ”   \n r A c i d =%f m ol W at er / m o l A c i d ” , r A c i d )

24   disp ( ”NaOH( aq ) : ” )

25   a 2 = m 1 * ( 1 - y ) / M W a t e r

26   b 2 = m 1 * y / M B a s e

27   r B a s e = a 2 / b 2

28   printf ( ”   \n r B a s e=%f m ol W at er / m o l B a s e ” , r B a s e )

29   disp ( ”Na2SO4( aq ) : ”)30   a 3 = m 3 / M W a t e r

31   b 3 = m 2 / M S a l t

32   r S a l t = a 3 / b 3

33   printf ( ”   \n r S a l t =%f m ol W ater / m ol S a l t ” , r S a l t )

126

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 128/154

Figure 9.10: chapter 9 example 10

34   E = b 1

35   printf ( ”   \n E xt en t o f r e a c t i o n =%f m ol ” ,E )

36   n H A c i d = b a s i s * 3 . 8 5 * ( T 3 - T 1 ) / 1 0 0 0

37   n H S a l t = m * 4 . 1 8 4 * ( T 2 - T 1 ) / 1 0 0 038   n H B a s e = 0

39   H f S a lt = - 13 84

40   H f A c i d = - 88 4 .6

41   H f B a s e = - 46 8 .1

42   H f W a t e r = - 2 85 . 84

43   d e lt a Hr = H f S al t + 2 * H fW a te r - H f Ac id - 2 * H fB as e

44   printf ( ”   \n E n ta h lp y c ha n ge i n t h e r xn=%f Kj / mol ” ,

d e l t a H r )

45   Q = E * d e l t aH r + ( n H Sa lt - n H Ac i d - n H Ba s e )

46   printf ( ”   \n Q o f t h e r xn=%f Kj ” ,Q )

47   disp ( ” The a n sw er i n t h e T ex t i s w ro ng . ” )

check Appendix AP 3 for dependency:

961.sci

Scilab code Exa 9.6.1  chapter 9 example 10

1   clc

2   p a t h n a m e = g e t _ a b s o l u t e _ f i l e _ p a t h ( ’ 9 6 1 . s c e ’ )

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 9 6 1 . s c i ’

127

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 129/154

4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e rf ro m t h o s e o f Te xt bo ok ” )

6   y 1 = x * 1 6

7   y 2 = ( 1 - x ) * 3 0

8   x C H 4 = y 1 / ( y 1 + y 2 )

9   H H V Me t h an e = ( H 1 + 2 * 4 4. 0 1 3) / M 1

10   H H V Et h a ne = ( H 2 + 3 * 4 4. 0 1 3) / M 2

11   H H V = x C H 4 * H H V M et h a ne + ( 1 - x C H4 ) * H H V E t h an e

12   printf ( ”   \n HHV of Fue l=%f KJ/g ” , H H V )

128

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 130/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 131/154

Figure 11.2: chapter 11 example 2

3   f i l e n a m e = p a t h n a m e + f i l e s e p ( ) + ’ 1 1 1 2 . s c i ’4   exec ( f i l e n a m e )

5   printf ( ” A l l t h e v a l u es i n t he t ex tb oo k a reA pp ro xi ma te d h en ce t h e v a l u e s i n t h i s c od e d i f f e r

f ro m t h o s e o f Te xt bo ok ” )

6   function   [ d v ] = f u n ( t )

7   d v = ( 1 0 ^ 6 ) * exp ( - t / 1 0 0) - 10 ^7

8   e n d f u n c t i o n

9   [ v o l , e r r ] = intg ( 0 , 6 0 , f u n )   / / i n t g i s an i n b u i l tf u n c t i o n which can c a l c u l a t e d e f i n i t e i n t e g r a l s

10   printf ( ”   \n Vo lume a t t h e e nd o f 6 0 d a y s=%E” , v o l + v 0 )

check Appendix AP 1 for dependency:

1131.sci

Scilab code Exa 11.3.1  chapter 11 example 2

1   clc

130

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 132/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 133/154

Appendix

Scilab code AP 1   11.3.1.sci

1   m 1 = 1 . 5 0   //k g2   m 2 = 3   //k g3   C v 1 = 0 . 9   / / c a l / g C4   C v 2 = 0 . 1 2   / / c a l / g C5   Q d o t = 5 0 0   //W6   T 1 = 2 5 0   //C7   T 2 = 2 5   //C

Scilab code AP 2   1112.sci

1   v 0 = 1 0 ^ 9

Scilab code AP 3   9.6.1.sci

1   x = 0 . 8 5

2   H 1 = 8 02   //Kj /mol3   H 2 = 1 42 8   // k j /mol4   M 1 = 1 6

5   M 2 = 3 0

Scilab code AP 4   9.5.6.sci

1   x = 0 . 1

2   y = 0 . 2

3   M A c i d = 9 8 . 1

4   M S = 3 2

132

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 134/154

5   M S a l t = 1 4 2

6   M B a s e = 4 07   M W a t e r = 1 8

8   M N a = 4 6

9   b a s i s = 1 0 0 0   // g10   T 2 = 3 5

11   T 1 = 2 5

12   T 3 = 4 0

Scilab code AP 5   9.5.5.sci

1   disp ( ” f ro m t a b l e s , ” )

2   H f A c id = - 12 94   //Kj/mol3   H f B a s e = - 46 9 .1   //Kj /mol4   H f S a lt = - 19 74   //Kj/mol5   H f W a t er = - 28 5. 8   //Kj /mol

Scilab code AP 6   9.5.4.sci

1   b a s i s = 1 5 0   / / m o l / s2   x = 0 . 9

3   H i n Et h a no l = - 2 12 .1 9

4   H i n Et h a n on e = - 1 47 . 075   H o u tE t h a no l = - 2 16 . 81

6   H o u t Et h a n on e = - 15 0. 9

7   H o u t H y d r o g e n = 6 . 5 9 5

8   N i n E t h a n o l = 1 3 5

9   N i n E t h a n o n e = 1 5

10   Q = 2 4 4 0   //KW

Scilab code AP 7   9.5.2.sci

1   N i n M e t h a n e = 1 0 0   //mol2   N i n O x y g e n = 1 0 0   //mol3   N i n N i t r o g e n = 3 7 6   //mol4   N o u t M e t h a n e = 6 0   //mol5   N o u t O x y g e n = 5 0   //mol

133

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 135/154

6   N o u t N i t r o g e n = 3 7 6   //mol

7   N o u t F o r m a l = 3 0   //mol8   N o u t C a r b o n = 1 0   //mol9   N o u t W a t e r = 5 0   //mol10   H 1 = - 74 .8 5   //Kj /mol11   H 2 = 2 .2 35   //Kj /mol12   H 3 = 2 .1 87   //Kj /mol13   H 5 = 3 . 7 5 8 //Kj /mol14   H 6 = 3 . 6 5 5   //Kj/mol15   H 8 = - 3 93 . 5+ 4 .7 5   //Kj /mol16   H 9 = - 2 41 . 83 + 4 .2 7   //Kj/mol17   T 1 = 2 5   //C

18   T 2 = 1 5 0   //C

Scilab code AP 8   9.5.1.sci

1   n N H 3 = 1 0 0   / / m o l / s2   n O 2 i n = 2 0 0   / / m o l / s3   H 1 = 8 . 4 7 0   //Kj/mol4   H 3 = 9 . 5 7 0   //Kj/mol5   T 1 = 2 5

6   T 2 = 3 0 0

7   H r = - 90 4. 7   //Kj /mol

Scilab code AP 9   9.4.1.sci

1   H e t h a n e = - 1 55 9 .9   //Kj/mol2   H e t h e ne = - 14 11   //Kj /mol3   H h y dr o g en = - 2 85 . 84   //Kj/mol

Scilab code AP 10   9.3.1.sci

1   H C O 2 = - 3 93 .5   //Kj /mol2   H H 2 O = - 2 85 . 84   //Kj/mol3   H C 5 H 12 = - 17 3   //Kj /mol

Scilab code AP 11   9.1.2.sci

134

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 136/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 137/154

Scilab code AP 16   8.4.4.sci

1   b a s i s = 1   / / mol f e e d2   x = 0 . 6 8 4   // mole f r a c t i o n Of B3   y = 0 . 4

Scilab code AP 17   8.4.3.sci

1   T 1 = 3 3 7 . 9   //K2   T 2 = 4 7 3   //K3   T c = 5 1 3 . 2   //K

Scilab code AP 18   8.4.2.sci

1   d e l t a H v = 2 8 . 8 5   / /Kj / mol a t 69 C2   T 1 = 2 5   //C3   T 2 = 6 9   //C4   C p = 0 . 2 1 6 3   / / K j / m o l C5   V =1   //L6   P =7   / / b a r7   D = 0 . 6 5 9   //KG/L

8   M = 8 6 . 1 7   //Kg9   n d o t = 1 0 0   //mol /h10   T 3 = 3 0 0   //C

Scilab code AP 19   8.4.1.sci

1   m d o t = 1 5 0 0   //g/mi n2   M = 3 2   //g/mol3   d e l t a H v = 3 5 . 3   //Kj /mol

Scilab code AP 20   8.3.5.sci

1   x = 0 . 1   //CH42   T 1 = 2 0

3   T 2 = 3 0 0

4   V d o t = 2 0 0 0   //L/min

136

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 138/154

Scilab code AP 21   8.3.4.sci

1   x = 0 . 6

2   T 1 = 0

3   T 2 = 4 0 0

4   n d o t = 1 5 0   //mol /h

Scilab code AP 22   8.3.3.sci

1   T 1 = 4 3 0   //C

2   T 2 = 1 0 0   //C3   n d o t = 1 5   //Kmol/min

Scilab code AP 23   8.3.2.sci

1   T 1 = 2 0   //C2   T 2 = 1 0 0   //C3   T 3 = 9 0   //C4   T 4 = 3 0   //C5   P =3   / / b a r6   V =5   //L

7   R = 0 . 0 8 3 1 4   //L. bar /mol . K8   T = 3 6 3   //K9   n d o t = 1 0 0   //mol/min

Scilab code AP 24   8.3.1.sci

1   m a s s = 2 0 0   //k g2   T i = 2 0   //C3   T f = 1 5 0   //C

Scilab code AP 25   7.7.3.sci

1   W s = 1 0 ^ 6   //N.m/s2   d e l t a P = - 8 3* 1 0^ 3   //N/mˆ23   g = 9 . 8 1   //m/sˆ2

137

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 139/154

4   d e l t aZ = - 10 3   //m

5   D = 1 0 ^ 3   //kg/mˆ3

Scilab code AP 26   7.7.2.sci

1   d e l t aZ = - 2. 5   // f t2   u 1 = 0

3   D = 5 0   //lbm/ f t ̂ 34   F = 0 . 8 0   // f t . l b f /l bm5   V =5   // ga l6   g = 3 2 . 1 7 4   / / f t / s ˆ 27   I D = 0 . 2 5   // in

Scilab code AP 27   771.sci

1   V d o t = 2 0   //L/min2   P 2 = 1 . 0 1 3 2 5 * 1 0 ^ 5   //atm3   I D 1 = 0 . 5   //cm4   I D 2 = 1   //cm5   g = 9 . 8 1   //m/sˆ26   d e l t a Z = 5 0   //m

Scilab code AP 28   7.6.3.sci

1   m 3 = 1 1 5 0   //Kg/h2   H 3 = 2 6 7 6   //KJ/Kg3   H 2 = 3 0 7 4   //KJ/Kg4   H 1 = 3 2 7 8   //KJ/Kg

Scilab code AP 29   7.6.2.sci

1   b a s i s = 1   //Kg/s2   x = 0 . 6

  // e t ha ne3   T 1 = 1 5 0   //K4   T 2 = 2 5 0   //K5   P =5   / / b a r6   H o u t 1 = 9 7 3 . 3   //KJ/Kg

138

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 140/154

7   H o u t 2 = 2 3 7 . 0   //KJ/Kg

8   H i n 1 = 3 1 4 . 3   //KJ/Kg9   H i n 2 = 3 0   //KJ/Kg

Scilab code AP 30   7.6.1.sci

1   m 1 = 1 2 0   //k g2   m 2 = 1 7 5   //k g3   m 3 = 2 9 5   //k g4   I D = 6   //cm5   P = 1 7   / / b a r6   H 1 = 1 2 5 . 7   //Kj/Kg

7   H 2 = 2 7 1 . 9   //Kj/Kg8   H 3 = 2 7 9 3   //Kj /k g

Scilab code AP 31   7.5.3.sci

1   m d o t = 2 0 0 0   //Kg/h2   P = 1 0   / / b a r

Scilab code AP 32   7.5.1.sci

1   H 0 = 1 9 6 . 2 3  //Btu/lbm2   H 5 0 = 2 0 2 . 2 8   //Btu/lbm

3   P f i n a l = 5 1 . 9 9   / / p s i a4   P i n i t i a l = 1 8 . 9 0   / / p s i a5   V f i n a l = 1 . 9 2 0   // f t ˆ3/ lbm6   V i n i t i a l = 4 . 9 6 9   // f t ˆ3/ lbm

Scilab code AP 33   7.4.2.sci

1   m d o t = 5 0 0 / 3 6 0 0   //Kg/s2   u 1 = 6 0   //m/s

3   u 2 = 3 6 0   //m/s4   d e l t a Z = - 5   //m5   g = 9 . 8 1   //m/sˆ26   Q d o t = - 10 ^4   / / K c a l / h7   W s = 7 0   //KW

139

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 141/154

Scilab code AP 34   7.4.1.sci

1   U = 3 8 0 0   //J /mol2   P =1   //atm3   V c a p = 2 4 . 6 3   //L/mol4   n d o t = 2 5 0   //Kmol/h

Scilab code AP 35   7.2.2.sci

1   g = 9 . 8 1   //m/sˆ2

2   m d o t = 1 5   //Kg/s3   z 2 = 2 0   //m4   z 1 = - 2 2 0   //m

Scilab code AP 36   7.2.1.sci

1   I D = 2   //cm2   Vdot=2   //mˆ3/h

Scilab code AP 37   6.7.1.sci

1   V = 5 0   //L2   P =1   //atm3   T = 3 4 + 2 7 3 . 2   //K4   y = 0 . 3

5   x F = 0 . 0 0 1

6   R = 0 . 0 8 2 0 6

7   P s t a r = 1 6 9   //mm o f Hg8   P m m = 7 6 0   //mm o f Hg

Scilab code AP 38   6.6.2.sci

1   b a s i s = 1 0 0 0   //Kg o f s o l u t i o n2   i n p u t x A = 0 . 3   //Wt . f r a c t i o n o f a c e to n e3   o u t p u t x A 1 = 0 . 0 5

4   o u t p u t x M 1 = 0 . 0 2

140

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 142/154

5   o u t p u t x A 2 = 0 . 1

6   o u t p u t x M 2 = 0 . 8 7

Scilab code AP 39   6.6.1.sci

1   V 1 = 2 0 0   //CC Aceto ne2   x = 0 . 1   / /Wt a c e t o n e3   V 2 = 4 0 0   / / C C c h l o r o f o r m4   D A = 0 . 7 9 2   / / g / c c5   D C = 1 . 4 8 9   / / g / c c6   D W = 1   / / g / c c

Scilab code AP 40   6.5.4.sci

1   m 1 = 5   // g o f s o l u t e2   m 2 = 1 0 0   // g o f Water3   P =1   //atm4   T f = 1 0 0 . 4 2 1   //C5   T i = 2 5   //C6   R = 8 . 3 1 4   //J /mol .K

Scilab code AP 41   6.5.3.sci

1   b a s i s = 1   / / Tonn e Epsom s a l t p r o d u ce d / h2   i n p u t x = 0 . 3 0 1   / / Tonne MgSO4/ to nn e3   o u t p u t x = 0 . 2 3 2   // Tonne MgSO4/ to nn e4   M = 1 2 0 . 4

5   M 1 = 2 4 6 . 4

Scilab code AP 42   6.5.2.sci

1   i n p u t x = 0 . 6

2   b a s i s = 1 0 0  / / k g F ee d3   S = 6 3   //Kg KNO3/1 00 Kg H2O

Scilab code AP 43   6.5.1.sci

141

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 143/154

1   b a s i s = 1 5 0   // kg f e e d

2   S 1 0 0 = 0 . 9 0 5   // g AgNO3/ g3   S 2 0 = 0 . 6 8 9   // g AgNO3/g4   i n p u t x = 0 . 0 9 5   / / kg w a te r / k g5   o u t p u t x = 0 . 3 1 1   / / kg w a te r / k g

Scilab code AP 44   6.4.2.sci

1   y = 0 . 0 1

2   T = 3 0   //C3   P = 2 0   //atm4   H = 2 . 6 3 * 1 0 ^ 4

5   x B = 0 . 5

Scilab code AP 45   6.4.1.sci

1   b a s i s = 1 0 0   / / l b−mol e /h2   x = 0 . 4 5

3   P H 2 O = 3 1 . 6   //mm o f Hg4   P S O 2 = 1 7 6   //mm o f Hg5   P = 7 6 0   //mm o f Hg6   y =2

7   M 1 = 6 48   M 2 = 1 8

Scilab code AP 46   6.3.3.sci

1   T = 7 5 + 27 3   //K2   P 7 5 = 2 8 9   //mm o f Hg3   h r = 0 . 3

4   P o r i g = 8 2 5   //mm o f Hg5   P o r i g B a r = 1 . 1   / / b a r6   V d o t = 1 0 0 0   //Mˆ3/h7   R = 0 . 0 8 3 1

Scilab code AP 47   6.3.2.sci

142

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 144/154

1   T = 1 0 0 + 2 7 3 . 2   //K

2   P T = 5 2 6 0   //mm o f Hg3   y = 0 . 1   / / b y v o lu m e4   b a s i s = 1 00   // mol o f f e ed g as

Scilab code AP 48   6.3.1.sci

1   P = 7 6 0   //mm o f Hg2   P s t a r = 2 8 9   //mm o f Hg

Scilab code AP 49   6.1.1.sci

1   T 2 = 1 5 . 4 + 2 7 3 . 2   //K2   T 1 = 7 . 6 + 2 7 3 . 2   //K3   P 1 = 4 0   //mm o f Hg4   P 2 = 6 0   //mm o f Hg5   T = 4 2 . 2 + 2 7 3 . 2   //K6   R = 8 . 3 1 4   // J/ mol . k

Scilab code AP 50   5.4.3.sci

1   y N 2 = 0 . 7 5

2   y H 2 = 1 - y N 2

3   P = 8 0 0   //atm4   T = - 7 0+ 2 73 . 2   //K5   T c H 2 = 3 3   //K6   T c N 2 = 1 2 6 . 2   //K7   P c H 2 = 1 2 . 8   //atm8   P c N 2 = 3 3 . 5   //atm

Scilab code AP 51   5.4.2.sci

1   n = 1 0 0   //gm−m o l e s

2   V =5   / / l t r3   T = -2 0. 6 + 2 73 .2   //K4   T c = 1 2 6 . 2   //K5   P c = 3 3 . 5   //atm6   R = 0 . 0 8 2 0 6

143

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 145/154

Scilab code AP 52   5.4.1.sci

1   V c a p = 5 0   //Mˆ3/hr2   P = 4 0   / / b a r3   T = 3 0 0   //K4   R = 8 . 3 1 4

5   M = 1 6 . 0 4   //k g/k mol

Scilab code AP 53   5.3.2.sci

1   V = 2 . 5   //mˆ32   n = 1 . 0 0   //Kmol3   T = 3 00   //K4   T c = 3 0 4 . 2   //K5   P c = 7 2 . 9   //atm6   w = 0 . 2 2 5

7   R = 0 . 0 8 2 0 6

Scilab code AP 54   5.3.1.sci

1   T = - 15 0. 8 + 2 73 .2   // k

2   Vc ap = 3 /2   //L/mol3   T c = 1 2 6 . 2   // k4   P c = 3 3 . 5   //atm5   w = 0 . 0 4 0

Scilab code AP 55   5.2.5.sci

1   f l o w i n A = 4 0 0   //L/min2   f l o w i n N = 4 1 9   // mˆ 3 STP / min3   P f i n a l = 6 . 3   / / g a u g e4   T f i n a l = 3 2 5   // C

5   P a c e t o n e = 5 0 1   //mm o f Hg6   D a c e t o n e = 7 9 1   / / g / L7   M a c e t o n e = 5 8 . 0 8   // g8   T 1 = 3 0 0   // k9   P 1 = 1 2 3 8   / /mm Hg o r i g i n a l

144

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 146/154

Scilab code AP 56   5.2.4.sci

1   // a l l t h e c a l c u l a t i o n s a re done i n R s c a l e2   T 2 = 2 8 5 + 4 6 0   //R3   T 1 = 3 2 + 4 6 0   //R4   P 2 = 1 . 3 0   //atm5   P 1 = 1   //atm6   V 1 d o t = 3 . 9 5 * 1 0 ^ 5   // f t ˆ3/h

Scilab code AP 57   5.2.3.sci

1   V 1 = 1 0   // f t ˆ32   T 1 = 7 0 + 4 6 0   //R3   P 1 = 1   //atm4   P 2 = 2 . 5   //atm5   T 2 = 6 1 0 + 4 6 0   //R

Scilab code AP 58   5.2.2.sci

1   T = 3 6 0 + 2 7 3   // Ke l v i n2   P =3   //atm

3   V d o t = 1 1 0 0   / / k g / h4   M = 5 8 . 1

Scilab code AP 59   5.2.1.sci

1   T = 2 3 + 2 7 3   / / k e l v i n2   P = 3 + 1 4 . 7   / / p s i3   / / c o n v er s io n o f p r e s s u r e from p s i g t o p s i r e q u i r e s

a d di t i o n o f 1 4. 67 whi ch i s 1 atm4   R = 0 . 0 8 2 0 6   // l t −atm

5   M N 2 = 2 8   / / m o l e c u l a r wt .6   w e i g h t = 1 0 0   //gr ams

Scilab code AP 60   5.1.1.sci

145

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 147/154

1   w t p e r c t = 0 . 5

2   D w a t e r = 0 . 9 9 8   //g/cmˆ33   D s u l f u r i c = 1 . 8 3 4   //g/cmˆ3

Scilab code AP 61   4.9.1.sci

1   f e e d = 5 9 . 6   / / m o l / s2   x = 0 . 2

3   T o p F l o w 1 = 4 8 . 7   / / m o l / s4   o u t p u t x 1 = 0 . 0 2 1

5   B o t t o m F l o w 1 = 1 0 . 9

6   T o p F l o w 2 = 4 8 . 3

7   o u t p u t x 2 = 0 . 0 6 38   B o t t o m F l o w 2 = 6 . 4

Scilab code AP 62   4.8.4.sci

1   b a s i s = 1 0 0   // mol p f p ro du ct g as2   x C O = 0 . 0 1 5

3   x C O 2 = 0 . 0 6 0

4   x O 2 = 0 . 0 8 2

5   x N 2 = 0 . 8 4 3

Scilab code AP 63   4.8.3.sci

1   b a s i s = 1 0 0   // mol e t ha n e f e e d2   E 1 = 0 . 9

3   E 2 = 0 . 2 5

4   e x c e s s = 0 . 5

Scilab code AP 64   4.8.2.sci

1   b a s i s B u t a n e = 1 0 0  / / m ol / h b u t an e2   b a s i s A i r = 5 0 0 0   //mol /h

Scilab code AP 65   4.8.1.sci

146

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 148/154

1   x N 2 w e t = 0 . 6

2   x C O 2 w e t = 0 . 1 53   x O 2 w e t = 0 . 1

4   x H 2 O = 0 . 1 5

5   b a s i s = 1 0 0   / / m o l Wet g a s

Scilab code AP 66   4.7.3.sci

1   x 0 = 0 . 9 9 6

2   b a s i s = 1 0 0   // mol co mbi ned f e e d t o t he r e a c t o r3   i n p u t x H 2 = 0 . 7

4   s i n g l e _ p a s s = 0 . 6

5   i n p u t x C O 2 = 0 . 2 86   molI=2

7   I x = 0 . 0 0 4

8   f i n a l = 1 5 5   //k mol /h

Scilab code AP 67   4.7.2.sci

1   E = 0 . 9 5

2   b a s i s = 1 0 0   //mol

Scilab code AP 68   4.6.3.sci

1   b a s i s = 1 0 0   //mol2   x = 0 . 8 5 0

3   c o n v 1 = 0 . 5 0 1

4   c o n v 2 = 0 . 4 7 1

Scilab code AP 69   4.6.1.sci

1   b a s i s = 1 0 0   //mol2   x P = 0 . 1

3   x N = 0 . 1 2

4   x A = 0 . 7 8

5   x = 0 . 3

147

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 149/154

Scilab code AP 70   4.5.2.sci

1   f e e d = 4 5 0 0   / / k g / h2   f e e d x = 0 . 3 3 3

3   m 3 x = 0 . 4 9 4

4   m 5 x = 0 . 3 6 4

5   x = 0 . 9 5

Scilab code AP 71   4.5.1.sci

1   x 1 = 0 . 9 6 0

2   x 2 = 0 . 9 7 7

3   x 3 = 0 . 9 8 34   b a s i s = 1 0 0   //mol

Scilab code AP 72   4.4.2.sci

1   m a s s i n = 1 0 0   / / k g2   M 1 = 1 0 0   //k g3   M 2 = 7 5   //Kg4   m a s s o u t = 4 3 . 1   //k g5   i n p u t x = 0 . 5

6   o u t p u t x A = 0 . 0 5 37   o u t p u t x M = 0 . 0 1 6

8   m 1 x A = 0 . 2 7 5

9   m 1 x M = 0 . 7 2 5

10   m 3 x W = 0 . 0 3

11   m 3 x A = 0 . 0 9

12   m 3 x M = 0 . 8 8

Scilab code AP 73   4.4.1.sci

1   i n p u t M a s s 1 = 1 0 0   / / k g / h2   i n p u t M a s s 2 = 3 0   //Kg/h3   o u t p u t M a s s 1 = 4 0   //Kg/h4   o u t p u t M a s s 2 = 3 0   //Kg/h5   i n p u t x 1 = 0 . 5

148

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 150/154

6   i n p u t x 2 = 0 . 3

7   o u t p u t x 1 = 0 . 98   o u t p u t x 2 = 0 . 6

Scilab code AP 74   4.3.5.sci

1   i n p u t x = 0 . 4 5

2   o u t p u t x = 0 . 9 5

3   b a s i s = 2 0 0 0   //L/h4   o u t p u t B a s i s = 1 0 0   //Kmol5   M 1 = 7 8 . 1 1

6   M 2 = 9 2 . 1 3

7   D = 0 . 8 7 28   z = 0 . 0 8

Scilab code AP 75   4.3.3.sci

1   b a s i s = 1 0 0   //k g2   i n p u t x = 0 . 2

3   o u t p u t x = 0 . 0 8

4   D =1   //k g/L

Scilab code AP 76   4.3.2.sci

1   b a s i s = 1 0 0   //mol2   F i n a l B a s i s = 1 2 5 0   / / l b−m o l e s / h

Scilab code AP 77   4.3.1.sci

1   V d o t = 2 0   //CC/min2   x = 0 . 0 1 5

3   M H 2 O = 1 8 . 0 2   // g4   DH2O=1

  //g/CC5   x 1 = 0 . 2

Scilab code AP 78   4.2.4.sci

149

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 151/154

1   r a t e = 0 . 1   //kmol/min

2   x 1 = 0 . 1   // m ol e f r a c t i o n h ex an e v ap ou r3   v o l = 1 0   //mˆ34   d = 0 . 6 5 9   //k g/L5   M = 8 6 . 2   //Kg/kmol

Scilab code AP 79   4.2.3.sci

1   m 1 = 2 0 0   // g2   m 2 = 1 5 0   // g3   x 1 = 0 . 4   / / m e t h a n o l / g4   x 2 = 0 . 7   / / m e t h a n o l / g

Scilab code AP 80   4.2.2.sci

1   i n p u t B e n z e n e = 5 0 0   / / k g / h2   i n p u t T o l u e n e = 5 0 0   / / k g / h3   U p S t r e a m B e n z e n e = 4 5 0   / / k g / h4   D o w n S t r e a m T o l u e n e = 4 7 5   / / k g / h

Scilab code AP 81   4.2.1.sci

1   input =50000  / / p p l / y r2   g e n e r a t i o n = 2 2 0 0 0   / / p p l / y r

3   c o n s u m p t i o n = 1 9 0 0 0   / / p p l / y r4   o u t p u t = 7 5 0 0 0   / / p p l / y r

Scilab code AP 82   3.5.2.sci

1   T 1 = 2 0   //F2   T 2 = 8 0   //F

Scilab code AP 83   3.4.2.sci

1   P 0 = 1 0 . 4 * 1. 0 1 3 *1 0 ^ 5 / 1 0. 3 3 //m H2O2   D = 1 0 0 0   //kg/mˆ33   g = 9 . 8 0 7   //m/sˆ24   h = 3 0   //m

150

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 152/154

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 153/154

5   f l o w r a t e 2 = 1 0 0 0   //mol/min

6   m a s s o f A = 3 0 0   //lbm7   m o l a r B = 2 8   //kmolB/s

Scilab code AP 89   3.3.1.sci

1   m a s s = 1 0 0   / / g o f CO22   M = 4 4 . 0 1   / / m o l e c u l a r w e i g ht

Scilab code AP 90   3.1.2.sci

1   T 1 = 2 0   // C2   T 2 = 1 0 0   // C3   V a t 2 0 = 0 . 5 6 0   // f t ̂ 34   D = 0 . 0 2 0 8 3 3 3   // f t

Scilab code AP 91   3.1.1.sci

1   m a s s = 2 1 5   //k g

Scilab code AP 92   2.7.2.sci

1   T = [1 0 20 40 80]2   M = [1 4 .7 6 2 0. 14 2 7. 73 3 8. 47 ]

3   s q r t T = sqrt ( T ) ;

Scilab code AP 93   2.7.1.sci

1   x = [1 0 30 50 70 90 ]

2   y = [ 20 5 2. 1 8 4. 6 1 18 .3 1 51 .0 ]

Scilab code AP 94   2.5.2.sci

1   / / t he b ad ba tc he s p er week a r e t ak en a s e l em e nt s o f av e c t o r y

2   y =[17 27 18 18 23 19 18 21 20 19 21 18]

152

8/10/2019 Elementary Principles Of Chemical Processes_R. M. Felder And R. W. Rousseau.pdf

http://slidepdf.com/reader/full/elementary-principles-of-chemical-processesr-m-felder-and-r-w-rousseaupdf 154/154

top related