electromagnetic cavity tests of lorentz invariance on...

Post on 20-Apr-2018

224 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Electromagnetic cavity tests of Lorentz invariance on Earth and in space

46th Recontres de Moriond, La Thuile / Italy

Prof. Achim Peters, Ph.D.

March 20-27, 2011

Michelson-Morley Experiment using optical resonators

Optische

Metrologie

Michelson-Morley experiments: History

Classical Michelson(-Morley) experiment

Berlin

Potsdam

Berlin / Potsdam: 1881

Michelson-Morley Experiment

Michelson (1881, Potsdam)Michelson & Morley (1887, Cleveland)

rotate

source

mirror

mirrorbeam splitter

observer

Modern Setup Brillet & Hall (1979, Boulder)

rotate

opticalresonator

beatmeasurement

First generation experiment (Konstanz)

• Cryogenic sapphire optical resonators (CORE)

• Operated at LHe temperature (4.2 K)

• Solely relied on Earth’s rotation

• ~ one Year of data

= (0.73 ±

0.48) Hzc/c = (2.6 ±

1.7) ·

10-15

Second generation experiment (Berlin)

• Used fused silica resonators (BK7 mirrors)

• Operated at room temperature

• Used precision air-bearing turntable

• ~ 1 year of data (with large gaps)

= (0.070 ±

0.076) Hzc/c = (2.5 ±

2.7) ·

10-16

Third generation experiment (Berlin)

• Fused silica mono-block resonators (Finesse ~ 400 000)

• Operated at room temperature

• Optimized chamber (thermal + mechanical)

• Precision air-bearing turntable

• ~ 1 year of data (with large gaps)

δν

= (0.002 ±

0.003) Hzc/c = (6.2 ±

12.3) ·

10-18

Data analysis

Data taken over more than one year (with gaps):

~ 1900 rotations per day at Trot = 45 seconds

~ 700 000 rotations total

employ multi-step data analysis procedure …

Data analysis

SME Lorentz-Invariance violation parameters (x 10-17)

Data taken over more than one year yield:

Limits are an order of magnitude more stringent as compared to the previous best laboratory measurements

• All parameters consistent with zero within three sigma

Herrmann, Senger et al. Phys. Rev. D80, 105011, (2009)

Current limitations ?

Thermal Noise in Optical Cavities

Future experiments

Optische

Metrologie

Beating the thermal noise …

Options:

back to the future … cryogenic resonators

avoid thermal noise regime rapid rotation (10 Hz ?)

massive parallelism thousands of resonators …

Rotating CryostatPVLAS vacuum birefringence experiment

Beating the thermal noise …

Options:

back to the future … cryogenic resonators

avoid thermal noise regime rapid rotation (10 Hz ?)

massive parallelism thousands of resonators …

Rotating CryostatPVLAS vacuum birefringence experiment

Big turntable(Kugler

GmbH) Large volume cryostat

Beating the thermal noise …

Old CORE specifications:• Sapphire• Mirror spacing 3 cm• Finesse 100 000• Linewidth

50 kHz

Longer COREs

with higher finesse reasonable improvement in frequency stability of up to two orders of magnitude

2010

8sec22sec10

107

16

Rel. freq. deviation of ~10-16

at half the rotation rate (22 s)

one year of

measurement yields an standard error of:

Additional measurement options …

Optische

Metrologie

Joining forces …

Joining forces …

Large volume cryostat

Optical resonators (linear)

Microwave resonators(whispering gallery)

But first …

HU Berlin Experiment UWA Perth Experiment

But first …

HU Berlin Experiment UWA Perth Experiment

Additional precursor experiments

Optical Metrology

A slightly modified MM-Experiment …

Light propagating inside matter …

Monolithic Sapphire Resonator?

Multi resonator experiment

Multi resonator experimentMonolithic sapphire resonator cooled down to 4K !

300 K

4 K

• Flawed coatings

Finesse of only 10 000

Very bad impedance matching (t ~ 10-6)

• High thermal sensitivity at 293K

Experiments at 4K essential …

Monolithic Sapphire Resonator

δν

= (0.022 ±

0.020) Hzc/c = (0.8 ±

0.7) ·

10-16

Multi resonator experiment

Also: More SME obtainable than in previous experiments: 15 instead of 8 …

Additional technology development …

Optische

Metrologie

Beating the thermal noise – going further …

CORE (2003)FS (2007)

ULE (1999)ULE (2011)

Beating the thermal noise crystalline mirrors !

Collaboration:Prof. Markus AspelmeyerDr. Garret Cole

Dr. Markus Weyers

Beating the thermal noise crystalline mirrors !

Collaboration:Prof. Markus AspelmeyerDr. Garret Cole

Dr. Markus Weyers

First results with MOVPE grown DBRs:(not

yet optimized for low optical loss)

• Q > 9 ×

104

at 2.4 MHz at 20 KΦ

< 1.1 ×

10-5

(still not limited by material, but by geometry)

• R > 99.98 %

Finesse > 16000G.

Cole, I.

Wilson-Rae, M.

Vanner, S.

Groblacher, J.

Pohl, M.

Zorn, M.

Weyers, A.

Peters, and M.

Aspelmeyer, “Megahertz monocrystalline

optomechanical

resonators with minimal dissipation,”

jan. 2010, pp. 847 –850.

Beating the thermal noise crystalline mirrors !

CORE (2003)FS (2007)

ULE (1999)ULE (2011)

- in Space -Perspectives

Satellite-based tests of Special and General Relativity

Germany

University Düsseldorf

ZARM, University Bremen

Humboldt-University

Berlin

Italy

University Lecce

University Bari France

ONERA

Observatoire

Cote Azur UK

RAL

OPTIS

Submitted ProposalExplorer 2011 Science Mission of Opportunity

Folie 41STAR meeting Bremen 2010 > Achim Peters > WG2: Iodine Standard > December 1st 2010

Iodine standard @ HUB

10-3 10-2 10-1 100 101 102 103 10410-16

10-15

10-14

10-13

10-12

Averaging time [s]

Alla

n D

evia

tion y(

)

Hum

bold

t-Uni

vers

ität z

u B

erlin

, AG

Opt

isch

e M

etro

logi

e

estimated stability 508 nm

extrapolated stability 532 nm

HU-Berlin Iodine (vs. ULE)HU-Berlin Iodine (vs. ULE)Jun Ye et al. (1999)Jun Zang et al. (2007)

Thank you

Optische

Metrologie

top related