ee143 s06 lecture 20 process integrationee143/sp06/lectures/lec_20.pdf · ee143 s06 lecture 20...

Post on 19-Mar-2018

223 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Process Integration

Example IC Process Flows• NMOS - Generic NMOS Process Flow• CMOS - The MOSIS Process Flow

Self-aligned Techniques• LOCOS- self-aligned channel stop• Self-aligned Source/Drain• Lightly Doped Drain (LDD)• Self-aligned silicide (SALICIDE)• Self-aligned oxide gap

Advance MOS Techniques• Twin Well CMOS , Retrograde Wells , SOI CMOS

MEMS Release Techniques• Sacrificial Layer Removal• Substrate Undercut

2Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Self-aligned channel stop with Local Oxidation (LOCOS)

Si3N4 CVDpad oxide

Si

LOCOS Process Flow

3Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

B+ channelstop

implant

Si

thermal oxidation(high temperature)

FOX

Self-alignedchannel stop

pp

B

dose~1013/cm2

4Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

If poly or metal lines lie on top of the Field Oxide (FOX), they will form a parasitic MOS structure.If these lines carrying a high voltage, they may create an inversion layer of free carriers at the Si substrate and shorts out neighboring devices. The relatively highly doped Si underneath (the “channel stop”) raises the threshold voltage of this parasitic MOS. If this threshold voltage value is higher than the highest circuit voltage, inversion will not occur.

SiO2

p-Si

metal

Comment: Field Oxide Channel Inversion

InversionLayer

Device 1Device 2

5Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Comments : Non self-aligned alternative:

P.R.1

SiO2

P+ P+

SiP+ P+

SiO2

2B+

3

Disadvantages1 Two lithography steps2 Channel stop doping not FOX aligned

6Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Self-aligned Source and Drain

n+n+

poly-Si gateAs+

n+n+

As+

Off Alignment

Perfect Alignment

* The n+ S/D always follows gate

7Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Comment: Non self-aligned Alternative

.n+n+ 2

.n+n+

Solution: Use gate overlap to avoid offset error.

.n+n+ 1

Channel not linked to S/D

Straycapacitance

Disadvantages: Two lithography steps, excess gate overlap capacitance

8Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Lightly Doped Drain (LDD)

LDD(1E17-to 1E18/cm3)

9Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Lightly Doped Source/Drain MOSFET (LDD)

The n-pockets (LDD) doped to medium conc (~1E18) are used to smear out the strong E-field between the channel and heavily doped n+ S/D, in order to reduce hot-carrier generation.

n+ n+n nSiO2

CVD oxidespacer

p-sub

10Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

n implantfor LDD

SiO2

CVD SiO2

Directional RIE of CVD Oxide

CVD conformaldeposition SiO2

LDD Process Flow using Ion Implantation

11Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Spacer left when CVD SiO2is just cleared on flat region.

nn

0.05µm

0.25µm

n+ n+

n+ implant

n n

12Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Self-Aligned Silicide Process (SALICIDE) using Ion

Implantation and Metal-Si reaction

n+n+

TiSi2 (metal)poly-gate

Metal silicides are metallic.They lower the sheet resistance of S/D and the poly-gate

13Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

n+n+SiO2

oxide spacer

SALICIDE Process Flow

14Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

n+n+SiO2

Ti

Ti deposition

Si

TiTiSi2

TiTi

Selective etch to remove unreacted Ti only

.

2)700(

2

2

SiOwithreactnotwillTi

TiSiSiTiCtreatmentheat o

→+>

15Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Salicide Gate TEM

16Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Self-aligned Oxide Gap

n+

poly-I

poly-II

small oxide spacing < 30nm

inversioncharge layerpoly-I

substrate

Gateoxide

poly-IIMOSFET

MOSCapacitor

DRAM structure ( MOSFET with a capacitor)

V (plate)

For a small spacing between poly-I and poly-II, inversion charges between MOSFET and Capacitor are electrically linked. No need for a separate n+ island.

Thermal Oxide grown conformal on poly-I

17Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Process Flow of MEMS Rotating Mechanisms

Micro-turbineEngine

In-Plane Movement

18Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Process Flow for a Hinge Structure

Out-of-plane Movement

19Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Layout of Thermal Bimorph Actuator

(See 143 Lab Manual for details)

20Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

After Patterning Poly-Si ( Mask #2)

TopView

CrossSection

Poly SiAluminum Oxide Si substrate Al-Poly contact

21Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

After Patterning Intermediate Oxide ( Mask #3, Contact-Hole Cut)

TopView

CrossSection

Poly SiAluminum Oxide Si substrate Al-Poly contact

22Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

After Aluminum patterning (Mask #4)

To contact pad

TopView

CrossSection

Poly SiAluminum Oxide Si substrate Al-Poly contact

23Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

After XeF2 selective etching of Si Substrate (Final Structure)

To contact pad

Poly SiAluminum Oxide Si substrate Al-Poly contact

TopView

CrossSection

24Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

SubstrateBoron doped (100)SiResistivity= 20 Ω-cm

Thermal Oxidation~100Å pad oxide

CVD Si3N4~ 0.1 um

LithographyPattern Field OxideRegions

RIE removal of Nitride and pad oxide

Channel StopImplant: 3x1012 B/cm2

60keV

Thermal Oxidation to grow 0.45um oxide

Wet EtchNitrdie and pad oxide

Ion Implant forThresholdVoltage control8x1011 B/cm2 35keV

Thermal OxidationTo grow 250Ågate oxide

LPCVDPoly-Si~ 0.35um

Dope Poly-Si to n+with PhosphorusDiffusion source

A Generic NMOS Process Flow

25Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

LithographyPoly-Si Gate pattern

RIE Poly-Si gate

Source /Drain Implantation~ 1016 As/cm2 80keV

Thermal OxidationGrow ~0.1um oxide on poly-SiAnd source/drian

LPCVDSiO2~0.35um

LithographyContact Window pattern

RIE removal of CVD oxide and thermal oxide

Sputter DepositAl metal~0.7um

LithographyAl interconnect pattern

RIE etch of Al metallization

Sintering at ~400oC in H2 ambientto improve contact resistanceand to reduce oxide interface charge

A Generic NMOS Process Flow (cont.)

26Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Generic NMOS Process Flow

activedevice

~5 µm

p-Si <100> 500µm

Boron-doped Si20 Ω-cm<100>

NMOS Structure

27Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

P.R.

SiO2

Si

nitride

SiO2

P.R.

Si

~0.1µm

keVcmB

60/103: 212×

317 /103 cm×

nitride

28Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Fox

p+ p+

keVcmB 35/105 211×

Fox

p+p+

29Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Resist

n+n+

As+ 80keV, 1016/cm2

n+n+

Thermal oxide

30Professor N Cheung, U.C. Berkeley

Lecture 20EE143 S06

Al

CVD oxide

intermediateoxide

n+n+

Si/SiO2

H2 anneal ~ 400oC

Al

InterfaceStates Passivation

n+ n+

top related