echocardiography in tavi patients 2014

Post on 29-Nov-2014

440 Views

Category:

Health & Medicine

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Peter Hansen is a Cardiologist with a particular interest in Transcatheter Aortic Valve Implantation. This talk is all about TAVI's and imaging used to assess them. You may be seeing a lot more TAVI's so this superb insight from an expert is invaluable.

TRANSCRIPT

TAVI – IMAGING

+ICE  +IVUS  +HYBRID  

Use of Imaging for TAVI

§  Assessment pre TAVI §  TTE, MSCT, 3DE, coronary angiography

§  Assessment during TAVI

§  TOE/TTE, Fluroscopy §  Assessment post TAVI

§  TTE, MSCT

Assessment pre TAVI •  TTE

–  Diagnosis: severe AS, morphology –  Aortic regurgitation –  LVOT/subaortic stenosis –  Mitral & tricuspid valves –  LV & RV function –  Pericardial effusion –  LV hypertrophy –  LV/LA thrombus

•  MSCT/3DE –  Annulus size –  Prosthesis type and size –  Coronary height –  Sinus of valsalva diameter –  Femoral access

•  Coronary angiography –  Proximal CAD –  PCI

•  CMR – LGE – interstitial fibrosis •  Dobutamine stress ECHO

SCREENING  

Is  it  severe  AS?  •  “Flow dependent” parameters •  Post-VPC accentuation of gradient •  Atrial fibrillation •  Aortic regurgitation •  “Classical” LG LF severe AS reduced

LVEF (DSE) •  “Paradoxical” LG LF severe AS normal

LVEF •  NF, LG, N LVEF severe AS

(SV  =  TVI  LVOT  x  CSA  LVOT)    or  SVI  

Dobutamine  stress  ECHO  in  paFent  with  LGSAS  

Baseline  CW  tracing:    Peak  velocity  3.2  m/s  Mean  grad  25  mmHg  AVA  0.45  cm2  

CW  10ug/kg/min  dobutamine  Peak  velocity  4.1  m/s  Mean  grad  39  mmHg  AVA  0.5  cm2  

Peak  velocity  stable,  AVA  increased,  contracFle  reserve  +,  absence  of  severe  AS  

Baseline                                                                                                                      5  ug/kg/min  

10  ug/kg/min                                                                                                    20  ug/kg/miin  

DSE in a patient with Pseudo-severe AS

Algorithm  for  classificaFon  of  paFents  with  LGSAS  

NFHG  N  EF                            LFLG  N  EF                                                NFLG  N  EF                                                                        LFLG  Low  EF  

MSCT  –  extent  of  AV  calcium    

Imaging for aortic annulus sizing prosthesis type/sizing

TTE/TOE                                                                                MSCT                                                                                      3D-­‐ECHO  

Circ  Cardiovasc  Interv:  2008  Piazza  et  al  

Understanding Annulus Anatomy

VIRTUAL  ANNULUS  

Most basal point of aortic leaflet attachment Measured during systole, ensure alignment, trailing edge to leading edge – PLAX TTE/TOE Circ  Cardiovasc  Interv:  2008  Piazza  et  al  

MSCT                              ECHO      3D        2D  

AorFc  annulus  is  oval  In  shape  in  majority  of  PaFents  RaFo  of  longD/shortD  1.28  

Basal SAX view of Aortic Valve

RC  

LC  

NC  

Circ  Cardiovasc  Interv:  2008  Piazza  et  al  

AORTIC  ANNULUS  SIZING  -­‐  2D  vs  3D  

Histology of Aortic Valvar Complex

Circ  Cardiovasc  Interv:  2008  Piazza  et  al  

ECHO vs Surgical Assessment Annulus Diameter

Mylofe  et  al,  JACC  CV  Intervent  2014  

2-D TOE Underestimate 35% Correct 55% Overestimate 10% 3-D TOE

INCORRECT  SIZING    

•  WRONG  VALVE  USED  IN  50  %  OR  CASES  

Aortic annulus – diameter variation during cardiac cycle

Aortic annulus: 4-5% larger in systole vs diastole

Which  MSCT  Measurement  to  use……  

•  Short  diameter  •  Long  diameter  •  Mean  diameter:  SAPIEN  •  Area-­‐derived  diameter  •  Perimeter-­‐derived  diameter  •  Area:  SAPIEN  •  Perimeter:  CoreValve  

Oversizing  –  does  it  mafer?  

•  10-­‐20%  oversizing  recommended  •  Area/perimeter/mean  diameter  •  TransiFon  zone    

– Annulus  falls  between  two  valve  sizes  •  Presences  of  LVOT  calcium    

–  Important:    •  balloon-­‐expandable  valves:  root  rupture  •  Self-­‐expanding  valves:  para-­‐valvular  leak  •  Any  post-­‐TAVI  BAV:  root  rupture/valvular  AR  

CONSEQUENCES  OF  INACCURATE  AORTIC  ANNULUS  SIZING  

•  ANNULUS  RUPTURE  –  BALLOON  EXPANDABLE  –  SELF-­‐EXPANDING  

•  PARAVALVULAR  AORTIC  REGURGITATION  –  LINKED  TO  PROGNOSIS  

•  VALVULAR  AORTIC  REGURGITATION  •  PROSTHESIS  EMBOLISATION  •  PPM  REQUIREMENT  POST  TAVI  •  POST-­‐TAVI  BAV  

–  ASSOCIATED  WITH  INCREASED  RISK  OF  CVA  

Aortic Annulus Sizing

3D  ANALYSIS  OF  3-­‐DIMENSIONAL  STRUCTURE  

AORTIC  ANNULUS  –  INACCURATE  SIZING  

Imaging for aortic annulus sizing prosthesis type/sizing

TTE/TOE                                                                                MSCT                                                                                      3D-­‐ECHO  

GA required for 3D TOE

Contrast requirement

•  When MSCT cannot be obtained but 3D available –  No local expertise with MSCT

•  When MSCT is contraindicated/risky –  Severe renal impairment

•  When there is doubt regarding the quality of the MSCT –  Motion artifact/difficult to repeat

When should 3DE be a surrogate, alternative or preferred for TAVI sizing

MSCT for assessment of peripheral access

3-­‐MENSIO  VALVES    (MSCT  BASED  FEM  ART  ACCESS  ANALYSIS)  

MSCT  GOLD  STANDARD  FOR  AORTIC  ANNULUS  SIZING  

2D  TEE  AND  TTE    UNDERESTIMATES  AORTIC  ANNULUS  DIMENSIONS  AORTIC  ANNULUS  DIMENSIONS  IMPORTANT  FOR  ACCURATE  PROSTHESIS  SIZING    

OR  SLIDE  FROM  JAMES’  TAVI  Talk  on  peripheral  access  

Assessment  during  TAVI  

PROCEDURE  

TAVI  -­‐  PROCEDURAL  STEPS  •  Baseline ECHO •  Peripheral access •  Identify ideal projection •  Cross valve •  BAV •  TAVI valve positioning •  TAVI valve deployment •  Post deployment final assessment

–  Haemodynamic –  Aortography –  TOE/TTE

•  Real-time monitoring for complications during procedure

Baseline TOE/TTE at start of procedure

•  Confirm gradients •  Baseline aortic regurgitation •  Baseline mitral valve assessment •  LVOT •  Baseline LV/RV wall motion •  Baseline pericardial effusion •  Online monitoring of valve procedure/complications •  Repeat all at end of procedure + check for complications

M85,  CKD,  COPD,  PAF,  T2D  Class  IV  NYHA,  no  significant  CAD  

SUPPORTIVE  HYBRID  REAL-­‐TIME  GUIDANCE  

Overlay  of  3D  MSCT  images  from  pre-­‐procedure  Screening  on  top  of  live  X-­‐Ray  fluoroscopy  

PSAX  TTE  Day  1  Post  TAVI    CDF  

Procedural Findings

67 TCT 2013 Procedural Outcomes Extreme Risk Study | Iliofemoral Pivotal

Echocardiography   Hemodynamics   Aortography  

Assessment  of  Post-­‐Procedural  AR:    Requires  agreement  of  three  assessment  tools  

PVAR  vs  VAR  Severity  ComplicaFons  

AR  Valve  posiFon  Coronary  perfusion  Gradient/AVI  

Cath  Lab  Assessment  Immediate  Post  Deployment  

•  Haemodynamic  –  AV  index:  Ao  diastolic  pressure-­‐LVEDP  (<25  =  significant  AR)  –  Peak  to  Peak  gradient  +  mean  gradient  (PT  Ao-­‐LVPT)  

•  Aortography  –  PVAR/VAR  –  use  enough  contrast/RAO  projecFon  –  Coronary  artery  perfusion  –  Competence  of  aorFc  root  

•  ECHO:  TOE/TTE  –  AorFc  paravalvular  and  valvular  leak  –  Systolic  valve  funcFon:  PG,  MG,  AVA  –  LV/RV  systolic  funcFon    –  Pericardial  effusion  –  compare  with  baseline  –  Mitral  valve  funcFon  –  mitral  regurgitaFon,  AML  hinge  point  –  Tricuspid  valve/pulmonary  pressure  

ComplicaFons  &  Management    AorFc  RegurgitaFon  • Typically paravalvular mild or mild-moderate severity • Most of AR disappears or reduces at 1 yr follow-up [13% absent, 80% mild AR]

J.  Am.  Coll.  Cardiol.  2012;59;1200-­‐1254  Cardiol  Clin  29  (2011)  211–222  

Aortography  

Mild  PVAR  

Annular and leaflet calcification may limit prosthesis expansion – cause of PVAR

Paravalvular/valvular  aorFc  regurgitaFon  post  TAVI  

•  AeFology  (paravalvular)    –  MalposiFon  

•  Supra-­‐annular  •  Infra-­‐annular  

–  Underexpansion  •  Focal/widspread  calcificaFon  

–  Prosthesis  mismatch  •  Undersizing  

–  Horizontal  aorta:      

•  AeFology  (valvular)  significant  VAR  uncommon  –  Incorrect  prosthesis  size  

•  Oversizing  –  Valve  damage  during  procedure  –  Underexpanded  valve  –  calcium  –  Overexpansion  of  valve  –  post  TAVI  BAV  

**  Not  well-­‐validated  and  may  overesFmate  the  severity  compared  with  the  quanFtaFve  doppler                      PVAR  assessment  cont’d……..      TOE:  Deep  transgastric  permits  best  axial  alignment  for  the  quanFtaFve  doppler  measurement    of  regurgitant  pressure  half-­‐Ame.  PLAX  and  PSAX  ME:  indenFficaFon  of  site,  number  and  extent      of  PVAR  jets.  Vena  contracta  diameter  and  area  can  be  assessed  using  2D  and  3D  colour  doppler    but  may  not  be  a  reliable  measure  of  PVAR  post  TAVI  (mulFple,  small,  irregular  shape,  eccentric  jets)    

Assessment  of  para-­‐valvular  aorFc  regurgitaFon  post  TAVI  

Para-­‐valvular  AR  post  TAVI  

ME  PSAX  

ME  PLAX  

Native aortic valve regurgitation post balloon aortic valvuloplasty

Deep  Transgastric  view  –  PHT    

US Pivotal Extreme Risk Study

Surgical  AVR  paravalvular  leak:  2-­‐4%  

US Pivotal Extreme Risk Study

Malposition – infra-annular SAPIEN  Balloon-­‐expandable  

Malposition – infra-annular Different Mechanism: CoreValve self-expanding

Coronary Occlusion

Pericardial Tamponade

Annular Rupture, Aortic Dissection…

TAVI IMAGING at follow-up •  Imaging modalities

–  TTE –valve function –  MSCT – valve

deformity –  CMR – LV/RV

assessment

FOLLOW-­‐UP  

Suggested time for routine ECHO follow up post TAVI

§  24-48 hrs, pre-discharge §  30 days §  6 month §  12 months §  Then yearly thereafter

Routine ECHO assessment of TAVI valve

•  Valve position •  Valve morphology •  Valve function

– Systolic – Diastolic

•  LV size and systolic function +RV •  Mitral + tricuspid •  Pulmonary pressure •  Pericardial effusion

How is TAVI different from SAVR

•  TAVI (vs SAVR) – No sewing ring – Much longer prosthesis (up to 55 mm)

•  Flow acceleration •  LVOT diameter •  Valve type •  PVAR

– Native valve in situ •  Calcium, leaflets, prosthesis type, size, expansion

–  LBBB more common

Definition of new valve dysfunction at follow-up

•  Suspected structural TAVI failure: compare to patient’s baseline ECHO eg TTE post-procedure (Day 1)

•  Significant changes: –  An increase in the mean gradient >10 mmHg –  A decrease in the AVA >0.3-0.4 cm2 –  A reduction in the DVI >0.10-0.13

•  Exclude measurement error – –  Baseline (Day 1) LVOT diameter –  Depends on valve depth in LVOT and valve type –  LVOT diameter and LVOT velocity for AVA should be measured in same

location outside the stent frame –  LVOT non-circular –  Flow acceleration inside stent frame prox to valve cusps with elevated

velocity •  Note changes in LV function and allow for effect on gradient

Definition of new valve dysfunction at follow-up

•  Suspected structural TAVI failure: compare to patient’s baseline ECHO eg TTE post-procedure (Day 1)

•  Significant changes: –  An increase in the mean gradient >10 mmHg –  A decrease in the AVA >0.3-0.4 cm2 –  A reduction in the DVI >0.10-0.13

Long-­‐term  Valve  Performance  

Post-implantation follow up of TAVI patients

•  Similar to follow up of surgically implanted prostheses but two important differences –  Calculation of EOA as an index of valve opening:

•  Founded in ratio of post- to pre-valvular velocities •  Flow acceleration within transcatheter valve proximal to

the valve cusps •  Pre-valvular velocity should be recorded proximal to the

stent (PW doppler with sample situated where LVOT diameter measured) and the post-valvular velocity recorded with CW doppler reflects that distal to the stented valve

•  If the LVOT velocity used in the calculations is erroneously recorded inside the stent but proximal to the cusps the result will be an increased velocity with an overestimation of the valve area and DVI

Prosthetic Aortic Stenosis •  Limitation of flow independent parameters

–  The absolute EOA does not account for the cardiac output requirements in relation to the patients body size

–  The indexed EOA may overestimate the haemodynamic burden in obesity; hence lower criteria may be more appropriate in patients with a BMI>30kg/m2

–  DVI severity criteria are dependent on LVOT size ie a lower threshold may be more appropriate if LVOT>25mm

–  The LVOT should be measured just beneath the ventricular margin of the valve stent/skirt

–  Unlike the surgically implanted valve, the transcatheter prosthetic valve EOA is defined not only by the size of the valve but also by the patient’s aortic valve/annular anatomy and procedural variables. Thus, well-established normal trans- catheter valve gradients and EOAs based on preimplant aortic annular dimensions do not currently exist.

•  In  condiFons  of  normal  or  near  normal  SV  

DSE  

**  Not well-validated, assumes continuity of flow and may overestimate the severity compared with the quantitative doppler                  PLAX  and  PSAX  TTE:  Number/distribution and extent of PVAR jets. A3C and A5C for further assessment of jets: PHT.    

Assessment  of  para-­‐valvular  and  valvular  prostheFc    AR  post  TAVI  

MSCT  post  TAVI  

Coronal  Oblique  View                    3D  volume  rendered  view  Medtronic  CoreValve                      2  weeks  post  TAVI  

-­‐Adequate  deployment  -­‐No  instent  restenosis  -­‐Patent  coronary  art  -­‐Good  valve  posiFon  -­‐Integrity  of  stent  struts  -­‐thrombus/vegetaFon    visible  on  leaflets  -­‐Assymmetric  expansion  

Medtronic  CoreValve/Evolut  

Edwards  Sapien  XT/3  

TTE  PRE  TAVI    PLAX:  CDF  VAR/MR  &  A5C:  CDF  VAR  

PORTICO  TAVI  post-­‐implantaFon:  LVOT  measurement  

A5C  TTE  Day  1  Post  TAVI    VTI  LVOT  

A5C  TTE  Day  1  Post  TAVI    CW  AorFc  Valve    

PORTICO  TAVI  D1    LVOT  measurement  

A5C  TTE  Day  2  Post  TAVI    PW  LVOT  outside  valve  and  inside  valve  

A5C  TTE  Day  2  Post  TAVI    CW  AorFc  Valve    

SECOND  GENERATION  TAVI  DEVICES  

Day  1  post  TAVI  

PORTICO  Day  1  –  Post  TAVI    Baseline  TTE  

TTE  PRE  TAVI    PLAX:  CDF  VAR/MR  &  A5C:  CDF  VAR  

PORTICO  Day  1  –  Post  TAVI    Baseline  TTE  

Day  1  post  TAVI  

A4C  TTE  Day  2  Post  TAVI    Simpsons  Biplane  for  LVEF  

PLAX  TTE  Day  1  Post  TAVI  

PSAX  TTE  Day  1  Post  TAVI    CDF  

PSAX  2D  TTE  Day  1  Post  TAVI  

A5C  TTE  Day  1  Post  TAVI    

A5C  TTE  Day  1  Post  TAVI  PVAR  PHT    

PSAX  TTE  Day  1  Post  TAVI    Mitral  Valve  CDF  

PSAX  TTE  Day  1  Post  TAVI    CDF  RVOT/PV/TV/AV  

Pre  TAVI  

A5C  TTE  Day  2  Post  TAVI    CDF  PVAR  and  PHT  PVAR  

The  color  Doppler  jet  of  a  paravalvular  leak  is  ouen  best  appreciated  from  the  deep  transgastric  TEE  view  (Figure  19).  This  view  usually  permits  the  best  axial  alignment  for  the  quanFtaFve  Doppler  measure  of  regurgitant  pressure  half-­‐Fme.  The  midesophageal  views  provide  the  cross-­‐secFonal  and  long-­‐  axis  views  to  facilitate  idenFficaFon  of  the  site  and  extent  of  paravalvular  leak.  The  vena  contracta  diameter  and  area  can  be  assessed  using  2D  and  3D  color  Doppler  applicaFon,  respecFvely  (Figure  20).  

Valve  funcFon    •  Valve  Academic  Research  ConsorFum-­‐2  maintains  the  original  

recommendaFons  to  use  echocardiography  as  the  primary  imaging  modality  for  the  assessment  of  prostheFc  valve  funcFon.39  This  should  include  the  valve  posiFon,  morphology,  funcFon,  and  evaluaFon  of  the  leu  ventricle  (LV)  and  right  ventricle  (RV)  size  and  funcFon.  The  sug-­‐  gested  Fme  points  for  rouFne  follow-­‐up  transthoracic  echo-­‐  cardiography  (TTE)  following  valve  implantaFon  are:immediately  (before  discharge)  following  the  implantaFon  for  transarterial  approaches  or  within  30  days  for  transapi-­‐  cal  or  transaorFc  

approaches,  6  months  following  implantaFon,  1  year  following  implantaFon,  and  yearly  thereauer.  At  these  endpoints,  prostheFc  aorFc  valve  steno-­‐  sis  and  regurgitaFon  should  be  reported.    

Diagnosis  of  aorFc  stenosis  

•  Establishing  diagnosis  of  severe  AS  –  AVA  <0.8-­‐1.0  or  AVAI  <0.6cm/m2  –  MG  >40  mmHg  –  Peak  velocity  >4.0  m/s    

•  Pixalls  in  ECHO  diagnosis  –  Gradient  post-­‐ectopic  –  Hyperdynamic  states  eg  anaemia  –  AorFc  regurgitaFon  –  Doppler  beam  not  parallel  to  valve  being  assessed  –  Low  LVEF  “classical”  LF  LG  severe  AS  (DSE  of  use):  severe  vs  pseudosevere  AS  and  

contracFle  reserve  –  Normal  LVEF  “paradoxical”  LF  LG  severe  AS:  hypertrophied  low  volume  LV,  low  SV    

•  TTE  (pre-­‐TAVI  planning)    

–  Annular  dimension  for  accurate  valve  sizing    

•  LimitaFons  of  TTE  and  TOE  •  TAVI  CT  method  of  choice  •  Undersizing  may  cause  PVL,  valve  migraFon  •  Oversizing  may  cause  root  rupture  and  incomplete  expansion  of  valve  leaflets  with  valvular  AR,  reducFon  in  

valve  durability  •  Annular  diameter  measure  in  systole  (annulus  is  bigger  in  systole),  in  PSLAX,  at  point  of  inserFon  of  aorFc  cusps  

(virtual  annulus),  from  Fssue  blood  interface  to  Fssue  blood  interface:  trailing  edge  to  leading  edge  •  TTE  underesFmates  the  annulus  in  most  cases  (not  measuring  true  diameter,  annulus  no  circular  but  oval  in  

most  cases)  •  TOE  2D  sFll  underesFmates  annulus  in  30%  of  cases,  but  overesFmates  annulus  in  10-­‐20%  of  cases  making  

valve  sizing  difficult  •  TOE  3D  is  more  accurate  and  correlates  well  with  TAVI  CT  measurements  but  resoluFon  much  lower  and  

equipment  and  experience  required  to  be  useful  

 

•  TTE  (pre-­‐TAVI  planning)    

–  Bicuspid  vs  tricuspid  valve  –  LV  and  RV  dimensions  and  funcFon  –  AorFc  regurgitaFon  –  Structure  and  funcFon  of  other  valves  –  LVOT  obstrucFon  –  Basal  septal  hypertrophy  –  LV  thrombus  –  Pre-­‐exisFng  echolucent  pericardial  space  eg  fluid  or  fat  and  

calcificaFon  (trans-­‐apical)  

•  TOE  (pre-­‐TAVI  planning)    

–  Not  rouFnely  done  pre-­‐procedure  since  rouFne  TAVI  CT  performed  –  used  in  our  insFtuFon  intra-­‐procedurally  (annulus  measurements  confirmed)  –  If  doubt  re:  aorFc  root,  annular  size,  bicuspid  vs  tricuspid,  LVOT  calc  –  TOE  assumes  annular  circularity  –  almost  never  the  case  –  Annulus  to  RCA  osFum  can  be  measured  but  not  the  annulus  to  LCA  osFum  (requires  

3D-­‐TOE  or  MSCT)  –  AorFc  arch  atheroma  –  important  to  know  but  MSCT  also  good  and  devices  smaller  

more  stearable  with  less  risk  of  embolisaFon    

•  Role  of  2D-­‐ECHO  limited  during  TAVI    

–  Immediate  detecFon  of  complicaFons  at  any  stage  –  Eg  causes  for  hypotension:    

•  Tamponade,  severe  PVL,  root  rupture,  new  LV  dysfuncFon  (coronary  obstrucFon)  

–  Assessment  of  valve  funcFon  auer  deployment  •  Mechanism  of  AR  •  PVL  •  Valvular  regurgitaFon  •  Systolic  valve  funcFon:  eg  remaining  gradient/area,  need  for  further  postdilataFon  

–  Deep  TG  view:  CW,  PW,  CF  

•  Prosthesis  impingement  of  the  AML  if  prosthesis  extends  past  the  AML  hinge  point  •  Complemented  by  haemodynamic  assessment  and  aortography  

•  Role  of  3D-­‐TEE  during  TAVI    

–  Annulus  dimension  confirmaFon  if  doubt  –  important  for  accurate  prosthesis  sizing  

 –  Assessment  of  severity  of  PVL  post  TAVI  deployment  

•  Planimetry  of  regurgitant  orifice  (eg  DTG,  Mid-­‐oesophageal)  •  Planimetry  of  vena  contracta  

–  Other  imaging  modaliFes:  •  Intracardiac  ECHO  (ICE)  •  Trans-­‐nasal  TOE  

Follow  up  assessment  •  The  follow-­‐up  assessment  should  also  begin  with  valve  imaging  and  

documentaFon  of  changes  in  morphology.  When  determining  whether  a  paFent  has  developed  haemodynamically  significant  structural  valve  failure,  the  paFent’s  own  baseline  echocardiographic  parameters  should  be  used  as  a  reference.    

•  An  increase  in  the  mean  gradient  >10  mm  Hg,  a  decrease  in  the  EOA>0.3-­‐0.4  cm2,  or  a  reducFon  in  the  DVI>0.1-­‐0.13  probably  indicates  a  change  in  valve  funcFon  and  should  trigger  a  comprehensive  haemody-­‐  namic  evaluaFon    

•  Whenever  valve  dysfuncFon  is  suspected,  the  careful  evaluaFon  of  valve  morphology  should  confirm  a  structurally  abnormal  valve.  In  addiFon,  measurement  error  must  be  excluded;  the  use  of  a  consistent  LVOT  diameter  for  more  accurate  follow-­‐up  study  comparisons  is  recommended.    

•  Finally,  changes  in  ventricular  morphology  would  be  expected  in  the  se}ng  of  long-­‐standing  significant  valvular  dysfuncFon  and  this  parameter  may  support  the  clinical  assessment  of  severity.    

 

TAVI  -­‐  PROCEDURAL  GUIDANCE  

TAVI  –  IMAGING  MODALITIES  

•  ECHO  •  MSCT  •  FLUORO  •  CMR  •  HYBRID  –  MSCT+FLUORO  •  OTHERS  –  IVUS,  ICE  

ICE  for  TAVI  

IVUS  FOR  TAVI      VOLCANO  CorporaFon  -­‐  9F  -­‐  60  mm  field  of  depth  

IVUS   MSCT  

3MENSIO  

PHILIPS  –  MSCT  (NAVIGATOR)  

TAVI  

Key TAVI Exclusion Criteria by ECHO

•  Bicuspid or unicuspid valve •  Severe valvular regurgitation (any) •  Pre-existing prosthetic heart valve •  Moderate/severe MS •  Hypertrophic obstructive cardiomyopathy •  Severe basal septal hypertrophy with

LVOT gradient •  Aortic annulus<20 or >29 mm •  Asc aorta diameter >43 mm (>40 for small

annulus)

PLAX  of  typical  severe  AS  with  gradients  and  AVA  on  side  

PLAX  Mr  Neville  Pseudosevere  AS  or  Mr  Ferris  (gradient  and  AVA)  

DSE  Features  to  look  for  to  disFnguish  between  true  severe  and  pseudo  

severe  AS  

Paradoxical  LF  LG  N  LVEF  

Circ  Cardiovasc  Interv:  2008  Piazza  et  al  

•  The  immediate  post-­‐TAVI  evaluaFon  documents  iniFal  valve  appearance  (posiFon  and  circularity  of  the  stent,  and  leaflet  morphology  and  moFon)  and  a  comprehensive  haemodynamic  evaluaFon.  Valve  Academic  Research  ConsorFum-­‐2  advocates  using  the  integraFve  approach    

 •  Using  1  flow  dependent  (eg,  mean  gradient)  and  1  flow  independent  criterion  (eg,  EOA)  for  the  iniFal  

haemodynamic  evaluaFon    •  If  there  is  discordance  between  these  measurements,  then  the  DVI  should  be  calculated.  An  abnormal  DVI  

indicates  possible  prostheFc  valve  dysfuncFon    •  A  normal  DVI  indicates  intrinsically  normal  prostheFc  valve  funcFon,  and  the  indexed  EOA  can  then  be  

used  to  determine  the  reason  for  the  iniFal  measurement  discordance.  When  the  indexed  EOA  is  low  in  the  se}ng  of  a  normal  DVI,  the  paFent  probably  has  a  prosthesis–paFent  mismatch  (PPM),  an  indicator  of  the  intrinsic  relaFonship  of  the  implanted  valve  to  the  cardiac  output  requirements  of  the  paFent  

 •  Prosthesis–paFent  mismatch  occurs  in  the  se}ng  of  a  morphologically  normal  valve  and  is  considered  to  

be  haemodynamically  insignificant  if  the  indexed  EOA  is  >0.85  cm2/m2,  moderate  if  between      •  0.65  and  0.85  cm2/m2,  and  severe  if<0.65  cm2/m2.  However,  for  obese  paFents  (body  mass  index  >30  kg/

m2)  lower  criteria  may  be  more  appropriate    

•  There  is  growing  evidence  suggesFng  a  significant  associaFon  of  post-­‐procedural  paravalvular  aorFc  regurgitaFon  (AR)  with  short-­‐  and  long-­‐term  mortality.    

•  As  the  number  of  implanted  transcatheter  heart  valves  increases,  valve  durability  and  dysfuncFon  become  more  crucial  issues.    

•  EvaluaFng  the  presence  and  severity  of  regurgitaFon  should  include  an  assessment  of  both  central  and  para-­‐valvular  components,  with  a  combined  measurement  of  ‘‘total’’  aorFc  regurgitaFon  (AR)  reflecFng  the  total  volume  load  imposed  on  the  LV    

•  The  quanFtaFve  and  semi-­‐quanFtaFve  haemodynamic  assessment  of  AR  severity  should  be  performed  with  Doppler  echocardiography  according  to  the  guidelines    

•  Color  Doppler  evaluaFon  should  be  performed  just  below  the  valve  stent  for  para-­‐valvular  jets,  and  at  the  co-­‐aptaFon  point  of  the  leaflets  for  central  regurgitaFon    

•  Although  all  imaging  windows  should  be  used,  the  parasternal  short-­‐axis  view  is  criFcal  in  assessing  the  number  and  severity  of  paravalvular  jets    

•  Whenever  possible,  the  quanFficaFon  of  the  prostheFc  regurgitant  volume,  effecFve  regurgitant  orifice  area,  and  regurgitant  fracFon  (Table  10)  should  be  performed    

•  The  regurgitant  volume  may  be  calculated  as  the  difference  between  the  stroke  volume  across  any  non-­‐regurgitant  orifice  (RVOT  or  mitral  valve)  and  the  stroke  volume  across  the  LVOT    

•  It  is  important  to  realize  that  at  this  Fme  the  body  of  evidence  supporFng  the  numerical  criteria  used  in  Table  10  as  well  as  Figure  4  may  be  limited.  These  criteria  should  be  used  as  guidelines  for  clinical  decision-­‐making  and  require  further  validaFon  as  our  experience  conFnues  to  expand    

–  Accurate  quanFficaFon  of  AR  post  TAVI  •  May  consist  of  valvular  and  para-­‐valvular  AR  (usually  just  PVR)  •  Valvular  AR:  CF  doppler,    

–  length  of  jet  unreliable  indicator  of  severity,  –  proximal  jet  width  or  cross-­‐secFonal  area  preferred,    –  following  criteria:  <25%  mild,  26-­‐64%  moderate,  >65%  severe,  limited  to  valvular  

AR  as  PVR  ouen  mulFple  jets,  irregular  shaped  jets  and  eccentric  jets  •  Valvular  AR:  Vena  Contracta  

–  VC  esFmate  of  EROA  –  AcousFc  shadowing  from  stent/sewing  ring  may  interfere  with  measurements  –  VC  measured  at  the  level  of  the  cusps  of  the  bioprostheFc  valve  

•  QuanFtaFve  measurements  –  Total  SV-­‐non-­‐regurgitant  valve  SV=RV  –  EROA:  SV/VTI  –  Based  on  several  measurements  with  potenFal  for  errors  significant    

•  Para-­‐valvular  AR:  •  ASE/EAE  guidelines  •  Vena  Contracta  

–  Measured  at  the  prox  end  of  the  stent  skirt  –  No  validaFon  for  adding  the  vena  contracta  of  mulFple  jets  

•  ProporFon  of  the  circumference  of  the  sewing  ring/proximal  stent  skirt  occupied  by  the  jet  gives  a  semi-­‐quanFtaFve  guide  to  severity:  

–  <10%  mild  –  10-­‐20%  moderate  –  >20%  severe  –  Assumes  conFnuity  of  the  jet  which  may  not  be  the  case  for  transcatheter  valves  and  thus  may  overesFmate  the  severity  of  PVAR  in  the  se}ng  of  

mulFple  small  jets  –  This  approach  does  not  consider  the  that  the  radial  extent  of  PV  jets  may  vary  (eg  surgical  PVL)  and  in  the  case  of  transcatheter  valves  may  be  very  

small  ie  not  a  big  problem  –  AfempFng  to  add  the  degrees  of  involvement  when  the  jets  are  small  is  challenging  

•  QuanFtaFve  methods  for  assessment  of  severity  of  PVAR  post  TAVI  –  RV:    –  comparison  of  SV  across  AV  (forward+regurg  vol)  LVOT  and  a  non-­‐regurgitant  valve  eg  mitral  or  tricuspid  (RV  ouxlow),  can  be  used  for  prostheFc  

valves  and  for  TAVI  –  Total  stroke  volume  also  measured  by:  subtracFng  LVESV  (forward)  from  LVEDV(forward+regurgitant),  not  accurate  with  2D,  3D  may  be  the  

method  of  choice,  growing  evidence  for  3D  evaluaFon  of  RV  by  this  method  for  naFve  AR  –  EROA:  –  Shore  pressure  half  Fme  of  CW  doppler  signal  of  AR:  problem:  mulFple  jets,  eccentric,  irregular  shape,    –  Density  of  spectral  display:  best  if  one  single  jet  –  Diastolic  flow  reversal  in  the  desc  aorta:  PW  doppler  from  the  suprasternal  notch/abdominal  aorta  from  subcostal  view  

•  CombinaFon  of  above,  iniFal  haemodynamic  assessment  and  aortography  is  ouen  required  as  well  as  clinical  parameters  during  follow  up  

•  CMR  auer  7  weeks  in  experienced  centres  with  the  right  magnet  is  the  most  accurate  and  limited  evidence  suggests  that  the  echo  assessment  underesFmates  the  degree  of  severity  of  PVR  post  TAVI  

top related