ece 510 lecture 4 reliability plottingweb.cecs.pdx.edu/~cgshirl/documents/qre_ece510... · 16 jan...

Post on 15-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ECE 510 Lecture 4 Reliability Plotting

T&T 6.1-6

Scott Johnson

Glenn Shirley

Functional Forms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 3

Reliability Functional Forms

• Choose functional form for model to fit data

Data

Model (functional form)

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4

A Function Bestiary – Bestiary: A medieval collection of stories providing physical and

allegorical descriptions of real or imaginary animals

• Continuous distributions

– Normal

– Exponential

– Lognormal

– Weibull

– Gamma

– Beta

• Discrete distributions

– Hypergeometric

– Binomial

– Poisson

• Statistical distributions

– Chi-square

– Student’s t

– F

Most common for reliability

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 5

Normal Distribution

• Using Excel:

– PDF = NORMDIST(x,μ,σ,FALSE)

– CDF = NORMDIST(x,μ,σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept = – (y-intercept) / slope

μ = mean σ = standard deviation

uniform rand is CDF where

)(normal rand CDFNORMSINV

2

2

1

2

1

x

exf

2

2

1

2

1

xx

exdxF

σ2 = variance

2xe

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 6

Normal Distribution

• Using Excel:

– PDF = NORMDIST(x,μ,σ,FALSE)

– CDF = NORMDIST(x,μ,σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept

μ = mean σ = standard deviation

uniform rand is CDF where

)(normal rand CDFNORMSINV

Normal Distribution

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3x value

PD

F

Normal Distribution

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

x value

CD

F

2

2

1

2

1

x

exf

2

2

1

2

1

xx

exdxF

σ2 = variance

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 7

Normal Distribution Reliability Plots

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 t

H(t

)

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 8

Use of Normal Distributions

• Most measurement error

• Sum of random things is normal

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 9

Exponential Distribution

• Using Excel:

– PDF = λ*EXP(-λx)

– CDF = 1-EXP(-λx)

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

λ = scale factor

uniform rand is CDF where

)1ln(lexponentia rand

CDF

xexf

xexF 1

te

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 10

Exponential Distribution

• Using Excel:

– PDF = λ*EXP(-λx)

– CDF = 1-EXP(-λx)

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

λ = scale factor

uniform rand is CDF where

)1ln(lexponentia rand

CDF

xexf

xexF 1

Exponential Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6x value

PD

F

Exponential Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

x value

CD

F

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 11

Exponential Reliability Plots

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 t

H(t

)

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 12

Use of Exponential Distributions

• Constant fail rate

– No “memory” of the past; no age

– Radioactive decay

– Soft errors, external environment

• Easy to calculate

– MTTF = 1/λ

– Median time to fail from so 5.01 50

50 t

etF

2ln50 t

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 13

Exercise 4.1 • Given an exponential fail distribution with

khr

%04.0

what is the probability of failure within 15,000 hours of use? What is the MTTF?

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 14

Solution 4.1

• Convert to “pure” units

khr

%04.0

hour

fails4000000.0

then evaluate the fail function at 15,000 hours

%6.0006.011 000,154000000.0 eetF t

The MTTF is even easier

hours 000,500,21

MTTF

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 15

LogNormal Distribution

• Using Excel:

– PDF = NORMDIST(ln(t),ln(t50),σ,FALSE)/t

– CDF = NORMDIST(ln(t),ln(t50),σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

t50 = median time to fail σ = standard deviation

uniform rand is CDF where

expnormal rand CDFNORMSINV

2

50lnln

2

1

2

1

tt

et

tf

2

50lnln

2

1

2

1

ttt

et

tdtF

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 16

LogNormal Distribution

• Using Excel:

– PDF = NORMDIST(ln(t),ln(t50),σ,FALSE)/t

– CDF = NORMDIST(ln(t),ln(t50),σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

t50 = median time to fail σ = standard deviation

uniform rand is CDF where

expnormal rand CDFNORMSINV

2

50lnln

2

1

2

1

tt

et

tf

2

50lnln

2

1

2

1

ttt

et

tdtF

LogNormal Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10x value

PD

F

LogNormal Distribution

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x value

CD

F

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 17

Lognormal Reliability Plots

Mostly decreasing failure rate: IM-type mechanism

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

t

F(t

)

Failure rate = h(t) = f(t)/S(t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6t

h(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

t

S(t

)Cumulative Hazard Function H(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6t

H(t

)

PDF f(t) = d/dt CDF

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6t

f(t)

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 18

Use of Lognormal Distributions

Le

SB eI ~

11 tt RR

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 19

Weibull Distribution

• Using Excel: – PDF = WEIBULL(x,β,α,FALSE) – CDF = WEIBULL(x,β,α,TRUE) =1-EXP(-((x/α)^β)) – Note γ=0 in Excel

• Plot using: – y-axis = weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

xxxf exp

1

xxF exp1

β = shape parameter

α = scale parameter

γ = location parameter

uniform rand is CDF where

1ln Weibullrand1 CDF

Note: α and β are often

swapped in meaning!

Excel swaps them (below). T&T use βm and αc.

t

e

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 20

Weibull Distribution

• Using Excel: – PDF = WEIBULL(x,β,α,FALSE) – CDF = WEIBULL(x,β,α,TRUE) =1-EXP(-((x/α)^β)) – Note γ=0 in Excel

• Plot using: – y-axis = weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

xxxf exp

1

Weibull Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

x value

CD

F

Weibull Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5x value

PD

F

xxF exp1

β = shape parameter

α = scale parameter

γ = location parameter

uniform rand is CDF where

1ln Weibullrand1 CDF

Note: α and β are often

swapped in meaning!

Excel swaps them (below). T&T use βm and αc.

alpha beta

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 21

Weibull Reliability Plots Weibull, β=0.5 (<1) Weibull, β=1.5 (>1)

Increasing failure rate: Wearout (WO) type mechanism

Decreasing failure rate: Infant Mortality (IM) type mechanism

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 t

H(t

)

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 t

H(t

)

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 22

Use of Weibull Distributions

• When fail is caused by the worst of many items

• When it fits the data well

Weibull

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 23

Main Reliability Functions

t

e

2

t

e

t

e

2ln

t

e

Multiple Mechanisms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 24

Multiple Mechanisms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 25

ththth

tFtFtStStF

tStStS

tot

tot

tot

21

2121

21

1

Survivals multiply, hazard rates add:

Exercise 4.2

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 26

tthUseful: for the Weibull, from T&T table 4.3:

Plot both the hazard rate h(t) (like above) and the fail function F(t).

Hand fit 2 Weibull distributions to the human mortality data like this:

Solution 4.2

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 27

tth

2

2

1

11

tt

eetF thth 21

Reliability Plotting

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 28

Reliability Plotting

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 29

• Note straight lines (dotted, each Weibull)

Probit Plot

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 30

• Our eyes detect straight lines

NORMSINV(CDF)

Excel NORMxxx Functions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 31

• Probit = NORMSINV(CDF) • CDF = NORMSDIST(Probit)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Probit

CD

F

Probit Plots in Excel

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 32

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept = – (y-intercept) / slope

Probit Plots in Excel

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 33

probits data

• Plot using:

y-axis = probit = NORMSINV(CDF)

x-axis = x

σ = 1/slope

μ = x-intercept = – (y-intercept) / slope

Uncertainties in Probit Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 34

“Exbit” Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 35

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

• Note that “exbit” is not a standard name

“exbits” data

Weibit Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 36

• Plot using: – y-axis = Weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

• Note that “Weibit” is a standard name

Weibit ln data

Lognormal Probit Plot

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 37

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

probits ln data

The Graph Paper Method

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 38

Exponential (semi-log) Normal

Perc

ent

Perc

ent

More Graph Paper

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 39

Lognormal Weibull

Perc

ent

Perc

ent

Exercise 4.3

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 40

• Make probit, “exbit”, Weibit, and lognormal probit plots

• Determine parameters for each plot

• Look at all 4 data sets (0 – 3)

• Determine which type each distribution is

– Give the parameters for each correct distribution

Solution 4.3

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 41

Data0 – exponential

λ = 3.12 Data1 – normal

µ = –0.06 σ = 0.88 Data2 – Weibull

α = 3.22 β = 1.97

Data3 – lognormal µ =0.88 σ = 0.67

JMP Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 42

• JMP versions of probit, “exbit”, and Weibit plots

Truncated Distributions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 43

CDF, Probit Scale

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Value

Pro

bit

Cumulative Distribution Function (CDF)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3Value

CD

F

Histogram

0

5

10

15

20

25

30

35

40

45

-3

-2.5 -2

-1.5 -1

-0.5 0

0.5 1

1.5 2

2.5

Value (Min of Range)

Nu

mb

er

of O

ccu

ran

ce

s

Top-Truncated Distributions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 44

4.0

3.0

Count

Rank

4.0

3.0

MissingCount

Rank

Note Adj CDF doesn’t reach 1

Exercise 4.4

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 45

• Make a truncated probit plot of the data on tab Ex8.

• Find the mean and standard deviation of the original distribution as best you can.

Solution 4.4

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 46

Data Censoring

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 47

• Missing data is called “censored”

– Type I, time censored

• Exact times to fail up to time t; no data after

– Type II, fail count censored

• Exact times to fail for the first r units to fail; no data after

– Multicensored or readout

• Have a time interval within which each unit failed up to tmax; no data after

The End

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 48

top related