e ective potential for relativistic...

Post on 29-Mar-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Effective potential for relativistic scattering

Janos Balog

Wigner Research Centre, Budapest and CAS IMP, Lanzhou

in collaboration with

Pengming Zhang Mahmut Elbistan

CAS IMP, Lanzhou CAS IMP, Lanzhou

• Quantum Inverse Scattering

• Nucleon potential from lattice QCD

• Sine-Gordon model

• Sine-Gordon effective potential from QIS

Szegedi Tudomanyegyetem, 2017 marcius 16

Quantum Inverse Scattering

Szegedi Tudomanyegyetem, 2017 marcius 16 1

Inverse scattering problems

Inverse scattering: find potential from scattering data

All physics is inverse scattering:

Newton’s law

Rutherford’s experiment

Watson & Crick double helix

Direct scattering: given potential (forces) find scattering data

Inverse scattering: given scattering data find forces

Szegedi Tudomanyegyetem, 2017 marcius 16 2

1-dimensional quantum mechanics on the half-line

Schrodinger operator: `u = −u′′ + qu

self-adjoint Hamiltonian: (~, m etc. scaled out)

`u = −u′′ + qu and boundary condition u(0) = 0

q(x) potential x ≥ 0

q(x) ∼ p(p−1)x2 x→ 0 p > 1

u(x) ∼ xp regular solution

u(x) ∼ x1−p singular solution

Szegedi Tudomanyegyetem, 2017 marcius 16 3

1 2 3 4 5

5

10

15

20

Figure 1: The singular potential q(x)

Szegedi Tudomanyegyetem, 2017 marcius 16 4

Three solutions of the `u = k2u Schrodinger equation:

φ(x, k) ∼ xp x→ 0 physical solution

φ(x, k) ∼ x1−p x→ 0 singular solution

f(x, k) ∼ eikx x→∞ Jost solution

f∗(x, k) = f(x,−k)

Jost function f(k):

f(x, k) = f(k)φ(x, k) + f(k)φ(x, k)

φ(x, k) = 2p−12ik {f(−k)f(x, k)− f(k)f(x,−k)}

Szegedi Tudomanyegyetem, 2017 marcius 16 5

2 4 6 8 10

2

4

6

Figure 2: The singular potential q(x) and the regular wave function φ(x, k) at k = 1.5

The constant total energy is also shown.

Szegedi Tudomanyegyetem, 2017 marcius 16 6

phase shift δ(k):

f(k) = |f(k)|e−iδ(k)

S-“matrix”:

S(k) = f(−k)f(k) = e2iδ(k)

asymptotics of the physical solution:

φ(x, k) ∼ −2p−12ik f(k)

{e−ikx − S(k)eikx

}

∼ sin [kx+ δ(k)]

Szegedi Tudomanyegyetem, 2017 marcius 16 7

(Solvable) example

q(x) = p(p−1)

sinh2(x)

change of variables:

u(x) = eikxF (z) z = 11−e−2x

hypergeometric equation:

z(1− z)F ′′(z) + [c− (a+ b+ 1)z]F′(z)− abF (z) = 0

a = p b = 1− p c = 1 + ik

hypergeometric function: 2F1(a, b, c; z)

Szegedi Tudomanyegyetem, 2017 marcius 16 8

physical solution:

φ(x, k) = 12p

(1− e−2x

)peikx2F1

(p, p− ik, 2p; 1− e−2x

)

Jost solution:

f(x, k) =(1− e−2x

)peikx2F1

(p, p− ik, 1− ik; e−2x

)

Jost function:

f(k) = 12p−1

Γ(1−ik)Γ(2p−1)Γ(p)Γ(p−ik)

S-matrix:

S(k) = Γ(1+ik)Γ(p−ik)Γ(1−ik)Γ(p+ik)

Szegedi Tudomanyegyetem, 2017 marcius 16 9

high energy asymptotics:

δ(k) = π2(1− p)− d1

k + . . . δ(∞) = π2(1− p)

p = 2:

f(k) = 11−ik S(k) = 1−ik

1+ik

Szegedi Tudomanyegyetem, 2017 marcius 16 10

Inverse scattering in three steps

• step 1: scattering data

F (x) = 12πix

∫ ∞

−∞dk eikx S′(k)

• step 2: Marchenko equation

F (x+ y) +A(x, y) +

∫ ∞

x

dsA(x, s)F (s+ y) = 0

• step 3: potential

q(x) = −2 ddxA(x, x)

Szegedi Tudomanyegyetem, 2017 marcius 16 11

p = 2 example

• step 1: scattering data

F (x) = −2 e−x

• step 2: Marchenko equation

A(x, y) = e−y

sinh(x)

• step 3: potential

A(x, x) = coth(x)− 1 q(x) = −2 ddxA(x, x) = 2

sinh2(x)

Szegedi Tudomanyegyetem, 2017 marcius 16 12

Nucleon potential from first principles

Szegedi Tudomanyegyetem, 2017 marcius 16 13

Modern nucleon-nucleon potential

Origin of the N-N Repulsive Core

The Most Fundamental Problem in Nuclear Physics

!!!!!!

r

!"""#""$%&%

!!""#""'()"*)"+)",

!!!"#""-./01"2

(Taketani)

IIIIII

Long range part

one pion exchange potential(OPEP)

I

II Medium range part

σ, ρ, ω exchange2π exchange

III Short range part

repulsive core (RC)

quark ?Bonn: Machleidt, Phys.Rev. C63(Ô01)024001Reid93: Stoks et al., Phys. Rev. C49(Ô94)2950.AV18: Wiringa et al., Phys.Rev. C51(Ô95) 38.

R. Jastrow(1951)

Szegedi Tudomanyegyetem, 2017 marcius 16 14

Szegedi Tudomanyegyetem, 2017 marcius 16 15

Our strategy in lattice QCD

Consider “elastic scattering”

NN → NN NN → NN + others (NN → NN + π,NN + NN, · · ·)

Elastic threshold

• S-matrix below inelastic threshold. Unitarity gives

Quantum Field Theoretical consideration

S = e2iδ

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

energy Wk = 2√k2 +m2

N < Wth = 2mN +mπ

Szegedi Tudomanyegyetem, 2017 marcius 16 16

Step 1

define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function

ϕk(r) = 〈0|N(x+ r, 0)N(x, 0)|NN,Wk〉QCD eigen-state

N(x) = εabcqa(x)qb(x)qc(x): local operator

Spin model: Balog et al., 1999/2001

“scheme”

Szegedi Tudomanyegyetem, 2017 marcius 16 17

partial wave

r = |r| → ∞

scattering phase shift (phase of the S-matrix by unitarity) in QCD !

ϕlk → Al

sin(kr − lπ/2 + δl(k))

kr

Asymptotic behavior of NBS wave function Lin et al., 2001; CP-PACS, 2004/2005

cf. Luescher’s finite volume method

no interaction

interaction range

L

allowed k at L δl(kn)

NBS wave function scattering wave function in quantum mechanics

Szegedi Tudomanyegyetem, 2017 marcius 16 18

Step 2

• Define a potential through application of a Schrodinger operator:

Vk(r) =

[Ek+

1µ∇

2]ϕk(r)

ϕk(r)

where Ek = k2

µ is the kinetic energy. Note the energy dependence of potential!

Step 3

• Solve the Schrodinger equation with this (zero energy) potential in infinite volume to find phase

shifts and possible bound states below the inelastic threshold.

Szegedi Tudomanyegyetem, 2017 marcius 16 19

Qualitative features of NN potential reproduced!

//�QPUFOUJBM

-40

-30

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2 2.5

VC(r) [MeV]

r [fm]

����qBWPS�2$% �TQJO�TJOHMFU�QPUFOUJBM�1-#����������

mπ ≃ 700 MeVB�����GN �-����GN QIFOPNFOPMPHJDBM�QPUFOUJBM

2VBMJUBUJWF�GFBUVSFT�PG�//�QPUFOUJBM�BSF�SFQSPEVDFE��

�BUUSBDUJPOT�BU�NFEJVN�BOE�MPOH�EJTUBODFT�

�SFQVMTJPO�BU�TIPSU�EJTUBODFSFQVMTJWF�DPSF

1S0

T. Hatsuda N. Ishii

1st paper: Ishii-Aoki-Hatsuda, PRL 90(2007)0022001

has been selected as one of 21 papers in Nature Research Highlights 2007. (One from Physics, Two from Japan, the other is on “iPS” by Sinya Yamanaka et al. )

“The achievement is both a computational tour de force and a triumph for theory.”

RVFODIFE

(courtesy of Sinya Aoki)

20

//�QPUFOUJBM QIBTF�TIJGU

-20

-10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

� [deg]

Elab [MeV]

explattice

*U�IBT�B�SFBTPOBCMF�TIBQF��5IF�TUSFOHUI�JT�XFBLFS�EVF�UP�UIF�IFBWJFS�RVBSL�NBTT�

/FFE�DBMDVMBUJPOT�BU�QIZTJDBM�RVBSL�NBTT�

1S0

aexp0 (1S0) = 23.7 fm

a0(1S0) = 1.6(1.1) fm

(courtesy of Sinya Aoki)

Szegedi Tudomanyegyetem, 2017 marcius 16 21

Problems with the NBS approach

• Dependence of potential on choice of nucleon operator

• Energy dependence of the NBS potential

Possible solutions:

define nonlocal, but energy-independent potential

define the zero-momentum potential

Uo(r) = limk→0

V NBSk (r)

correctly reproduces scattering lengths, but effective range different

Szegedi Tudomanyegyetem, 2017 marcius 16 22

Sine-Gordon model

Szegedi Tudomanyegyetem, 2017 marcius 16 23

Sine-Gordon model

Very well known: RFT (quantum/classical)

RM (quantum/classical) [alias RS model]

Integrable (solvable) =⇒ (almost) everything calculable

spectrum (solitons, anti-solitons, breathers)

S-matrix

Form-factors, correlators, free energy, ...

Szegedi Tudomanyegyetem, 2017 marcius 16 24

Lagrangian (~ = c = 1 RQFT conventions)

L = 12φ

2 − 12φ′2 + µ2

β2 cos(βφ)

SG coupling β: (equivalence to Thirring model)

0 < β <√

8π β = 2√π FF point

equations of motion: (Kl)Sine-Gordon equation

2ϕ+ µ2 sinϕ = 0 (ϕ = βφ)

parameters:

p = 4πβ2 ν = 1

2p−1

Szegedi Tudomanyegyetem, 2017 marcius 16 25

soliton mass:

m = 2p−1π µ

bound states (breathers):

mk = 2m sin(π2νk

)k = 1, 2, · · · < 2p− 1

Ruijsenaars-Schneider RQM description: zero-momentum potential

qo(x) = 4sinh2(πνx)

Szegedi Tudomanyegyetem, 2017 marcius 16 26

Sine-Gordon S-matrix

Rapidity parametrization: θ = θ1 − θ2

pi = mc sinh(θi) Ei = mc2 cosh(θi) Ei =√

(mc2)2 + (pic)2

soliton-soliton S-matrix (no bound states):

Σ(θ) = exp

{i

∫ ∞

0

dωω sin

(2πθω

) sinh((ν−1)ω)cosh(ω) sinh(νω)

}

phase shift:

Σ(θ) = e2iδ(θ) δ(∞) = π2(1− p)

Szegedi Tudomanyegyetem, 2017 marcius 16 27

for integer p explicit:

Σ(θ) =

p−1∏

m=1

sm−i sinh(θ)sm+i sinh(θ) sm = sin(mνπ)

2-particle scattering

• −→ p1 p2 ←− •x1 x2

initially: p1 > p2 x2 > x1 all times

asymptotic wave function (x2 − x1)→∞:

Φ(x1, x2) ≈ ei(k1x1+k2x2) + S(p1, p2)ei(k2x1+k1x2)

ki = pi~ i = 1, 2 wave numbers

Szegedi Tudomanyegyetem, 2017 marcius 16 28

Relativistic:

SR(p1, p2) = −Σ(θ1 − θ2) θi = arcsinh(pimc

)

NR Schrodinger equation:

HΦ = EΦ H = − ~2

2m∂2

∂x21− ~2

2m∂2

∂x22

+ U(x2 − x1)

separating COM and relative motion:

Φ(x1, x2) = eiK(x1+x2) Ψ(x2 − x1)

effective 1-particle Schrodinger equation:

− ~2

m Ψ′′(x) + U(x)Ψ(x) = ~2

mκ2Ψ(x)

Szegedi Tudomanyegyetem, 2017 marcius 16 29

total energy:

E = ~2

2m(k21 + k2

2) = ~2

m (K2 + κ2)

k1 = K + κ k2 = K − κasymptotic wave function:

Ψ(x) ≈ −A(κ)eiκx + e−iκx x→∞

NR S-matrix:

SNR(p1, p2) = −A(p1−p2

2~)

= −S(p1−p2mc

)

rescaling between physics ←→ maths conventions:

A(κ) = S(2κL) L = ~mc Compton length

Szegedi Tudomanyegyetem, 2017 marcius 16 30

Identification?

SNR(p1, p2) ∼ SR(p1, p2)

S(p1−p2mc

)∼ Σ

(arcsinh

(p1mc

)− arcsinh

(p2mc

))

2 special cases of interest:

I (fixed target) p2 = 0 p1 = kmc

SI(k) = Σ (arcsinh(k))

II (centre of mass) p1 + p2 = 0 p1 − p2 = kmc

SII(k) = Σ (2 arcsinh(k/2))

Szegedi Tudomanyegyetem, 2017 marcius 16 31

Effective Sine-Gordon potential

Szegedi Tudomanyegyetem, 2017 marcius 16 32

effective Sine-Gordon potentials

Sine-Gordon NR S-matrix, I detemination:

SI(k) =

p−1∏

m=1

sm−iksm+ik sm = sin(mνπ)

Sine-Gordon NR S-matrix, II detemination:

SII(k) =

p−1∏

m=1

sm−ik√

1+k2/4

sm+ik√

1+k2/4sm = sin(mνπ)

Szegedi Tudomanyegyetem, 2017 marcius 16 33

simplest case: I; p = 2

SI(k) = s1−iks1+ik = 1−ik/s1

1+ik/s1s1 = sin

(π3

)=√

32

rescaling of basic p = 2 case:

qI(x) = 32

1

sinh2(√

32 x

)

zero-momentum potential:

qo(x) = 4

sinh2(π3x)

Szegedi Tudomanyegyetem, 2017 marcius 16 34

Inverse scattering case I, general p

step1: Fourier transformation

F (x) = −p−1∑

m=1

Rm e−smx

residues:

Rm = 2sm∏

n 6=m

sn+smsn−sm

step2: Marchenko equation

Ansatz:

A(x, y) =

p−1∑

m=1

Rm bm(x) e−sm(x+y)

Szegedi Tudomanyegyetem, 2017 marcius 16 35

Marchenko equation reduced to system of algebraic equations:

bm = 1 +

p−1∑

n=1

znbnsm+sn

zm(x) = Rm e−2smx

step3: calculation of potential

A(x, x) =

p−1∑

m=1

bm(x)zm(x)

Szegedi Tudomanyegyetem, 2017 marcius 16 36

p = 3 solution

A(x, x) = −s1 − s2 +(s2

1−s22) sinh(s1x) sinh(s2x)

D(x)

determinant:

D(x) = s2 cosh(s2x) sinh(s1x)− s1 cosh(s1x) sinh(s2x)

short distance:

A(x, x) ≈ 3x

Szegedi Tudomanyegyetem, 2017 marcius 16 37

Results

Szegedi Tudomanyegyetem, 2017 marcius 16 38

1 2 3 4 5 6

5

10

15

20

Figure 3: Comparison of the integrated effective potential A(x, x) (solid) and the corresponding

zero-momentum Ao(x, x) (dashed) for p = 3.

Szegedi Tudomanyegyetem, 2017 marcius 16 39

1 2 3 4 5 6

10

20

30

40

Figure 4: Comparison of the integrated effective potential A(x, x) (solid) and the corresponding

zero-momentum Ao(x, x) (dashed) for p = 4.

Szegedi Tudomanyegyetem, 2017 marcius 16 40

0.5 1 1.5 2

2

4

6

8

10

12

Figure 5: The integrated effective potential in the COM frame for p = 2 (dots). For comparison

the analytically obtained LAB frame integrated effective potential A(x, x) (solid) is also shown.

Szegedi Tudomanyegyetem, 2017 marcius 16 41

0.5 1 1.5 2

10

20

30

40

Figure 6: The integrated effective potential in the COM frame for p = 3 (dots). For comparison

the analytically obtained LAB frame integrated effective potential A(x, x) (solid) is also shown.

Szegedi Tudomanyegyetem, 2017 marcius 16 42

Figure 7: Comparison of integrated SG effective potentials for p = 3. The solid (red) line, the

(blue) dots and the dashed (black) line are the LAB frame, the COM frame and the zero-momentum

potential, respectively.

Szegedi Tudomanyegyetem, 2017 marcius 16 43

Work in progress

Szegedi Tudomanyegyetem, 2017 marcius 16 44

SO FAR

• SI(k) =⇒ qI(x) p = 2, 3, 4, 5

• SII(k) =⇒ qII(x) [numerically] p = 2, 3, 4

• compare qI(x), qII(x), qo(x)

TO DO

• qI(x) general p?

• QIS with incomplete data?

• method can be used in nuclear physics?

Szegedi Tudomanyegyetem, 2017 marcius 16 45

Thank you!

Szegedi Tudomanyegyetem, 2017 marcius 16 46

top related