dss2010 neutrino hagner - desy.de · 2 flavor neutrino oscillations2 flavor neutrino oscillations 2...

Post on 07-Jul-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino PhysicsCaren Hagner, Universität Hamburg

• What are neutrinos?• Neutrino mass and mixing• Neutrino oscillations• Oscillations of atmospheric neutrinos (SuperK)• Neutrino beams:Oscillation of accelerator neutrinos (OPERA)

• Solar neutrinos:Oscillation of solar neutrinos(Homestake, SNO, Borexino)

• KamLAND reactor neutrino experiment• Summary• Outlook: Majorana neutrinos

Astroparticle Physics:- Solar Neutrinos- Cosmic Radiation- Supernovae- Neutrino TelescopesApplications:

- Monitoring of Nuclear Reactors

- Geo physics- New Technologies

Cosmology:- early universe- structure formation- dark matter

Elementary Particle Physics:- Mass?- Matter – antimatter symmetry- Physics beyond the Standard Model

Neutrino Physics

Why are we doing Neutrino Physics?

Caren Hagner, Universität HamburgDESY Summer School 2010

Fundamental Particles

u

d

Quarks:Quarks:

e-

Leptons:Leptons:

vec

s μ-

vμt

b τ-

Photon GluonInteractions by exchange of bosons:Interactions by exchange of bosons: W,ZGraviton

Caren Hagner, Universität HamburgDESY Summer School 2010

Wolfgang Pauli postulates the Neutrino (1930)

Num

ber o

f E

lect

rons

Electron energy

One expected this

But this was observed!

eepn ν++→ −

Energy spectrum of electrons from β-decayEnergy spectrum of electrons from β-decay

neutrinopnelectron EcmcmE −−= 22

ν

Solution: The Neutrino

@CERN Geneva

1925 Kopenhagen

Wolfgang Pauli in Hamburg (1955)

1922 Assistant at Universität Hamburg1924 Habilitation in Hamburg (Discovery of the Exclusion Principle)1922 Assistant at Universität Hamburg1924 Habilitation in Hamburg (Discovery of the Exclusion Principle)

Caren Hagner, Universität HamburgDESY Summer School 2010

Q=-1/3

NeutronNeutron

d

ProtonProton

Transformation d-Quark → u-Quark:Electroweak Interaction!Transformation d-Quark → u-Quark:Electroweak Interaction!

Decay of the Neutron - Birth of a Neutrino Decay of the Neutron - Birth of a Neutrino

eepn ν++→ −

u

e-

veQ = +2/3

d

Q = -1/3

uQ = +2/3 eeud ν++→ −

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino Properties

Neutral

Fermions with Spin ½

In the Standard Model: massless, stable, always left handed!

BUT: Today we know that neutrinos have mass0.05 meV < mv < 2 eVStandard Model must be extended!

pv

Spin

vL

Caren Hagner, Universität HamburgDESY Summer School 2010

How Neutrinos interactThe weak interaction

LLL bt

sc

du

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

LLL

e

e ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−− τ

νμνν τμ

ev−e

+W−W

−e

ev

ev−μ

+W

μv−μ

+W

Caren Hagner, Universität HamburgDESY Summer School 2010

Charged Current

Exchange of a W Boson:

ev

−e

−Wd

u−W

μv −μ

−e evu

ud

d

np

+W

μv

ud

Caren Hagner, Universität HamburgDESY Summer School 2010

0Zdd

μv μv

Neutral Current

Exchange of a Z0 Boson:

u

ud

d

nn

0Z

τv

−e −e

τv

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino mass and mixing

Neutrino mixing!Neutrino mixing!

⎟⎟⎟

⎜⎜⎜

⎛⋅⎟⎟⎟

⎜⎜⎜

⎛=

⎟⎟⎟

⎜⎜⎜

3

2

1

321

321

321

ννν

ννν

τττ

μμμ

τ

μ

UUUUUUUUU eeee

3 massive neutrinos: ν1, ν2, ν3 with masses: m1,m2,m3

Flavor-Eigenstates ve,vμ,vτ ≠ Mass-EigenstatesFlavor-Eigenstates ve,vμ,vτ ≠ Mass-Eigenstates

332211 vUvUvUv eeee ++=Example:

Caren Hagner, Universität HamburgDESY Summer School 2010

Parametrisation of Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix: • 3 mixing angles: θ12, θ23, θ13• 1 Dirac-phase (CP violating): δ

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix: • 3 mixing angles: θ12, θ23, θ13• 1 Dirac-phase (CP violating): δ

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛−

⎟⎟⎟

⎜⎜⎜

−⎟⎟⎟

⎜⎜⎜

−=

⎟⎟⎟

⎜⎜⎜

⎛ −

3

2

1

1212

1212

1313

1313

2323

2323

10000

0010

0

00

001

ννν

ννν

δ

δ

τ

μ cssc

ces

esc

cssc

i

ie

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino Mixing for 2 Flavors

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−

=⎟⎟⎠

⎞⎜⎜⎝

3

2

2323

2323

cossinsincos

νν

θθθθ

νν

τ

μ

323223 sincos vvv θθμ +=

Today we know that θ23≈45o:

( )3221 vvv +=μ

The probability that vμ has mass m2 is cos2θ23

e.g. probability that vμ has mass m2: 50%

mixing angle → probability to have a certain mass

( )3221 vvv +−=τ

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino OscillationsNeutrino Oscillations

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−

=⎟⎟⎠

⎞⎜⎜⎝

3

2

2323

2323

cossinsincos

νν

θθθθ

νν

τ

μ

Flavor eigenstates vμ, vτ Mass eigenstates v2,v3with m2, m3

W

μ

source createsflavor-eigenstates

W

τ

p,n hadrons

detector seesflavor-eigenstates

v2

v3

propagation determined bymass-eigenstates

23,2

23,23,2 mpE +==ω

slightly different frequencies→ phase difference changes

Caren Hagner, Universität HamburgDESY Summer School 2010

2 Flavor Neutrino Oscillations2 Flavor Neutrino Oscillations

23

22

2 mmm −=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=→

oszLxP πθνν τμ

223

2 sin)2(sin)(

Oscillation probability

)eV (inGeV) (in48.2km) in( 22m

ELosz Δ⋅

=

Prob

abili

ty t

o fi

nd v

τ

Distance x in Losz

Losz, ∆m2 sin2(2θ)

Super-Kamiokande

atmospheric neutrinosaccelerator neutrinos

JAPANKamLAND

reactor neutrinos

JAPANCANADA

solar neutrinos

SNO

Important experimental results in recent years

ve→vμ,τ

OscillationΔm2 ≈ 8·10-5 eV2

vμ→vτ,(s)

OscillationΔm2 ≈ 2·10-3 eV2

Neutrino Oscillations were observed→ Neutrinos have mass!

+ NEW: BOREXINO @ LNGS (Italy)+ MINOS (USA)

Caren Hagner, Universität HamburgDESY Summer School 2010

Let us first look how muon neutrinos oscillate

Sources of muon neutrinos are:The atmosphere (comic rays) Neutrino beams at particle accelerators

These neutrinos have energies of a few GeV

Detection methods:Water Cherenkov, Plastic Scintillators,Drift Tubes, Fotographic emulsions

Primary cosmic ray

N

N

K

π

π

μ

ν

π

atmospheric neutrinos

Caren Hagner, Universität HamburgDESY Summer School 2010

Oscillation of atmospheric neutrinos (1998)

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ=→

]GeV[]km[]eV[27.1sin2sin)(

2222

νμ θνν

ELmP atm

atmx

L ≈ 20 km

L ≈ 13000 km

atmosphericneutrinos:

Ev in GeV range

Oscillation probabilityvaries with zenith angle θ θ

Super-Kamiokande

electron event

myon event

50kt H2O

12000 PMTs12000 PMTs

Super-Kamiokande

Caren Hagner, Universität HamburgDESY Summer School 2010

SuperK – atmospheric neutrinos

e–like events μ–like events

without oscillationoscillation (best fit)data

νe

e

νμ

μ

Full SK-I data set, 90% CL (PRD71 (2005) 112005):

sin22θ > 0.92 1.5·10-3 eV2 < Δm2 < 3.4·10-3 eV2

Caren Hagner, Universität HamburgDESY Summer School 2010

How to make Neutrino beams (Ev ≈ 1GeV-100GeV)

ProtonBeam

Target FocusingDevices

Decay Pipe

Beam Dump

νμπ,Kμ

few 100 GeV

few GeV

Beam composition (typical example):

• dominantly vμ

• contamination fromvμ (≈6%), ve (≈0.7%), ve (≈0.2%)

• vτ ≲ 10-6

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA

Neutrino beam (vμ) from CERN to Gran Sasso Underground Lab (Italy)Neutrino beam (vμ) from CERN to Gran Sasso Underground Lab (Italy)

732 km

? τμ vv →

LNGS

vτ Appearance! vτ Appearance!

Started in june 2008, running…

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA: CNGS beam

%4/ =μμ vv

%87.0/)( =+ μvvv ee

GeV17=vE

400GeV p on graphite target

4.5·1019pot/year

Caren Hagner, Universität HamburgDESY Summer School 2010

Querschnitt des NeutrinostrahlsCNGS beam at 732km(FLUKA 2005)

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA: Detection of vτ

W

τ-

p,n hadrons

15% )(

48% )(

18%

18%

0

0

τ

τ

τ

τμ

ππππτ

ππτ

τ

μτ

vn

vn

vve

vv

e

+→

+→

++→

++→

+−−−

−−

−−

−−τ-decay:

Lead

Emulsions

ντ

τ−

1 mm

μ-

μv

τv

Hadrons

Typical topology of τ-decay:“Kink” within 1mm from vertex

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA Target: Lead/Emulsion Bricks

Lead/Emulsion Brick(total ≈ 200000)

10X0

8kg

Scanning

44 μm emulsion sheet

Field of view:2d image: 16 tomographic images

Vertex reconstruction & kinematical analysis

300μm

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA - DetectorSupermodule 1

Target Region:- Target Tracker (Scintillator)- Lead/Emulsion Bricks (100.000 per Supermodule)

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA - DetectorSupermodule 1

Magnet-Region:Iron &

RPC Planes

B B

Precision Tracker:6 Planes of Drifttubes

Target

v μ

X

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA – Brick Manipulating System

suction cup vehicle

Loading Station

Robot to insert/extract bricks

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA Sensitivity

exposure: 5 years @ 4.5 x1019 pot / year

0.716.410.56.6vτ in OPERA

BKGDΔm2=3.0x103eV2Δm2=2.4x10-3eV2Δm2=1.9x10-3eV2

OPERA: 6200 νμ CC+NC /year19 ντ CC/year (for Δm2=2•10-3 eV2)

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA Event (vμ CC)

Caren Hagner, Universität HamburgDESY Summer School 2010

May 2010: OPERA finds 1st vτ Event!

Caren Hagner, Universität HamburgDESY Summer School 2010

OPERA 1st vτ Event

Track 4: Kink after 1335µmdaughter track 8

"Observation of a first ντ candidate event in the OPERA experiment in the CNGS beam" (Phys. Lett. B 691 (2010), 138-145)."Observation of a first ντ candidate event in the OPERA experiment in the CNGS beam" (Phys. Lett. B 691 (2010), 138-145).

Caren Hagner, Universität HamburgDESY Summer School 2010

Now we look at electron neutrinos

Electron neutrino sources are:The Sun (neutrinos) Nuclear reactors (anti-neutrinos)

These neutrinos have energies of a few MeV

completely different detection techniques necessary!

Solar Neutrinos (Ev ≈ MeV)Solar Neutrinos (Ev ≈ MeV)

MeV7.2622He4 4 +++→ +eep ν

“Neutrino light” from the Sun (Super-Kamiokande)energy of the neutrinos in MeV

Solar Neutrinos: “pioneering experiment”

Raymond Davis Jr., Homestake Experiment

Nobelprize 2002Nobelprize 2002

Rexp = 0.34 × SSM

−+→+ ee ArCl 3737ν

Eν > 814 keV

Since≈1970

Creighton Mine (Nickel)Sudbury, CanadaCreighton Mine (Nickel)Sudbury, Canada

Depth 2070m

1000t D2O1000t D2O

9500 PMTs9500 PMTs

Caren Hagner, Universität HamburgDESY Summer School 2010

Neutrino detection in SNO

xx vnpdv ++→+

−++→+ eppdv e

−− +→+ evev ee

NC

CC

ES

γ

SNO Result (salt-phase)(PRL 92, 181301, 2004)

1/3 of solar ve arrive as ve on Earth2/3 of solar ve arrive as vμ or vτ .Measured total flux = Predicted flux

(Standard Solar Model)

Caren Hagner, Universität HamburgDESY Summer School 2010

Parametrisation of Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix: • 3 mixing angles: θ12, θ23, θ13• 1 Dirac-phase (CP violating): δ

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix: • 3 mixing angles: θ12, θ23, θ13• 1 Dirac-phase (CP violating): δ

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛−

⎟⎟⎟

⎜⎜⎜

−⎟⎟⎟

⎜⎜⎜

−=

⎟⎟⎟

⎜⎜⎜

⎛ −

3

2

1

1212

1212

1313

1313

2323

2323

10000

0010

0

00

001

ννν

ννν

δ

δ

τ

μ cssc

ces

esc

cssc

i

ie

θsolθ13, δθatm

Θ23: 34o - 58o θ13<13o, δ ? θ12: 29o - 39o

Caren Hagner, Universität HamburgDESY Summer School 2010

What do we know about neutrino masses?

∆m2solar ≈ 8·10-5eV2, ∆m2

atm ≈ 2·10-3eV2

v3

v1

v2

≳ 0.05 eV

normal hierarchy

Δmsolar

Δmatm

v1

v2

v3

inverted hierarchy

Δmatm

Δmsolar

v3v1 v2≲ 2 eV

quasi - degenerate

vevμvτ

Caren Hagner, Universität HamburgDESY Summer School 2010

Summary of Neutrino OscillationsNeutrino Oscillations have been observed withsolar, atmospheric, reactor and accelerator neutrinos.Neutrinos have mass!The absolute neutrino mass has not yet been measured, allowed range: 0.05 eV < mv < 2 eVNeutrino mixing exists and is very different from quark mixing. Why?Measurements of third mixing angle have been startedIs there CP-violation for neutrinos?Is the neutrino a Majorana particle?Search for neutrinoless Double-Beta Decay (Evidence?)

Caren Hagner, Universität HamburgDESY Summer School 2010

Many interesting results expected in next yearsMany questions still waiting to be solved by some of you!

top related